• 제목/요약/키워드: endothelium cell

검색결과 109건 처리시간 0.021초

골수줄기세포가 배양된 생분해성 매트릭스를 이용한 소구경 인공혈관 개발

  • 조승우;임상현;김일권;홍유선;유경종;박현영;최차용;김병수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.45-47
    • /
    • 2002
  • Although Dacron and ePTFE have most widely been used for artificial vascular grafts, these materials cannot be used for small-diameter grafts (l.D.<6mm) due to thrombotic occlusion. To overcome this limitation, a small-diameter vascular graft was developed with stem cell and tissue engineering method. Autologous bone marrow stem cells were cultured and seeded onto small-diameter (4mm) collagen tubular matrices. The matrices were anastomosed to carotid arteries in canine models. Prior to implantation, histological and electron microscopical examination revealed stem cell adhesion and growth on the matrices. Angiography indicated that the vascular grafts maintained patent for 8 weeks. Histological examination showed the regeneration of endothelium, media and adventitia in the grafts. This study may allow us to step forward to the development of tissue-engineered small-diameter vascular graft appropriate for clinical applications.

  • PDF

흰쥐 대뇌피질 신경세포에 미치는 호모시스틴의 신경독성에 대한 S-nitrosation의 역할 (S-nitrosation Ameliorates Homocysteine-mediated Neurotoxicity in Primary Culture of Bat Cortical Neurons)

  • 김원기
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.169-175
    • /
    • 1996
  • The reactivity of the sulfhydryl (thiol) group of homocysteine has been associated with an Increased risk of atherosclerosis, thrombosis and stroke. Thiols also react with nitric oxide (NO, an endothelium-derived relaxing factor (EDRF) ), forming S-nitrosothiols that have been reported to have potent vasodilatory and antiplatelet effects and been expected to decrease adverse vascular effects of homocysteine. The present study was aimed to Investigate whether the S-nitrosation of homocysteine modulates the neurotoxic effects of homocysteine. An 18 hour-exposure of cultured rat cortical neurons to homocysteine ( >1 mM) resulted in a significant neuronal cell death. At comparable concentrations ( <10 mM), however, S-nitrosohomocysteine did not induce neuronal cell death. Furthermore, S-nitrosohomocysteirle partially blocked NMDA-mediated neurotoxicity. S-nitrosohomocysteine also decreased NMDA-mediated increases in intracellular calcium concentration. The present data indicate that in brain nitric oxide produced from neuronal and nonneuronal cells can modulate the potential, adverse properties of homocysteine.

  • PDF

Acid sphingomyelinase-mediated blood-brain barrier disruption in aging

  • Park, Min Hee;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.111-112
    • /
    • 2019
  • Although many studies have reported that the breakdown of the blood-brain barrier (BBB) represents one of the major pathological changes in aging, the mechanism underlying this process remains relatively unexplored. In this study, we described that acid sphingomyelinase (ASM) derived from endothelial cells plays a critical role in BBB disruption in aging. ASM levels were elevated in the brain endothelium and plasma of aged humans and mice, resulting in BBB leakage through an increase in caveolae-mediated transcytosis. Moreover, ASM caused damage to the caveolae-cytoskeleton via protein phosphatase 1-mediated ezrin/radixin/moesin dephosphorylation in primary mouse brain endothelial cells. Mice overexpressing brain endothelial cell-specific ASM exhibited acceleration of BBB impairment and neuronal dysfunction. However, genetic inhibition and endothelial specific knock-down of ASM in mice improved BBB disruption and neurocognitive impairment during aging. Results of this study revealed a novel role of ASM in the regulation of BBB integrity and neuronal function in aging, thus highlighting the potential of ASM as a new therapeutic target for anti-aging.

종양괴사인자에 의하여 유도된 혈관내피세포의 Cell Adhesion Molecules 발현을 억제시키는 플라보노이드 선별 (Selection of Flavonoids Inhibiting Expression of Cell Adhesion Molecules Induced by Tumor Necrosis Factor- a in Human Vascular Endothelial Cells)

  • 최정숙;최연정;박성희;이용진;강영희
    • 한국식품영양과학회지
    • /
    • 제31권6호
    • /
    • pp.1134-1141
    • /
    • 2002
  • 염증성 cytokines의 분비 또는 혈관손상으로 인한 백혈구의 adhesion과 transmigration을 통하여 죽상경화과정이 시발되는데, 본 연구에서는 이러한 죽상경화의 초기과정에서 플라보노이드가 억제작용을 발휘하는 지를 규명하고자 하였다. 본 연구에서는 화학적인 구조가 서로 다른 플라보노이드를 사용하여 화학적인 구조와 항동맥경화작용과의 상관성을 착인하였다. TNF-$\alpha$는 혈관내피세포를 활성화시켜 THP-1 단핵구의 adhesion을 유의적으로 증가시켰다. 여러형태의 플라보노이드를 전처리하고 TNF-$\alpha$를 가하여 혈관내피세포를 활성화 시 켰을 때, flavonols인 quercetin과 flavones의 luteolin과 apigenin은 THP-1 단핵구의 adhesion억제효과를 보여주었다. 그러나, catechins과 flavanones의 플라보노이드는 이러한 억제효과를 전혀 보여주지 못하였다. 이러한 adhesion 억제작용을 가지는 플라보노이드는 CAMs 단백질의 발현도 차단시킨다는 것을 확인할 수 있었다. Quercetin, luteolin과 apigenin은 TNF-$\alpha$에 의하여 증가된 VCAM-1, ICAM-1 및 E-selectin의 단백질 발현을 일률적으로 감소 또는 차단시켰다. 그 대신, 단핵구의 adhesion을 차단시키지 못한 (-)epigallo-catechin gallate와 (+)catechin은 TNF-$\alpha$에 의한 이러한 CAMs의 발현을 전혀 억제시키지 못하였다. 또한 quercetin, luteolin과 apigenin의 CAMs단백질 발현 억제작용은 유전자 전사단계에서 mRNA의 down-regulation으로 인하여 나타난다는 사실을 알 수 있었다. 결론적으로 quercetin, luteolin, apigenin과 같은 플라보노이드는 TNF-$\alpha$와 같은 염증성 cytokines에 의한 단핵구의 adhesion을 혈관내피세포의 CAMs 단백질 발현을 억제하므로서 차단시킨다는 것이 확인되었다. 여기서 모든 플라보노이드가 이러한 활성을 다 지니고 있지 않아서 화학적인 구조와 초기 항동맥경화작용에는 서로 연관성이 있다는 것이 제시되었다. 또한, 선별된 플라보노이드의 초기 항동맥경화작용은 활성산소를 소거하는 플라보노이드의 항산화능과는 무관한 것 같다고 할 수 있다.

혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과 (Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • 제31권8호
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

  • Cho, Eun-Jung;Park, Myoung-Soo;Kim, Sahng-Seop;Kang, Gun;Choi, Sung-A;Lee, Yoo-Rhan;Chang, Seok-Jong;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.339-344
    • /
    • 2011
  • Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD ($10{\sim}100{\mu}g/ml)$ did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of $0.1{\sim}10{\mu}g/ml$ with an $ED_{50}$ value of $2{\mu}g/ml$. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high $K^+$ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.

각막 내피세포 성장 거동에 대한 락타이드 글리콜라이드 공중합체 필름과 세포외 기질의 효과 (Effect of Extracellular Matrix on the Growth Behavior of Corneal Endothelial Cells to Poly(lactic-co-glycolic acid) Film)

  • 김은영;김혜민;송정은;이현수;주천기;강길선
    • 폴리머
    • /
    • 제38권6호
    • /
    • pp.702-707
    • /
    • 2014
  • 각막 내피세포는 각막 가장 안쪽의 단일 세포층이며, 데스메막 위에 놓여있다. 데스메막은 피브로넥틴, 콜라겐, 라미닌, 단백당 등의 포함하는 세포외 기질이라 불리는 다양한 단백질들로 구성되어 있다. 본 연구에서, 조직공학에서 널리 이용되고 있는 락타이드 글리콜라이드 공중합체를 이용하여 투명한 필름을 제작하였으며, 표면에 다양한 부착 분자들(피브로넥틴, 콜라겐 타입 I, IV, 라미닌, FNC 코팅 믹스)을 코팅한 후, 세포 형태 관찰, 세포 증식 및 부착, ZO-1과 $Na^+/K^+-ATPase$의 발현을 확인하였으며, RT-PCR을 통해 각막 내피세포의 인자들을 확인하였다. 실험결과, in vitro 상에서 PLGA 필름은 각막내피세포 전달체로서 역할을 하며 코팅된 세포외 기질들은 각막 내피세포의 거동에 긍정적인 영향을 미침을 확인하였다.

염증성 치은조직에서 Cell Adhesion Molecule의 발현에 관한 연구 (Expression of Adhesion Molecule in Inflammatory Gingival Tissue)

  • 박경근;김은철;유형근;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제26권3호
    • /
    • pp.655-668
    • /
    • 1996
  • The change in vascular adhesion molecule expression and number of infiltrating leukocytes were investigated irnmunohistochemically in clinically healthy and inflammed gingiva. Monoclonal antibodies to ICAM-1, VCAM-1 and E-cadherin were used to identify positive vessels and leukocyte within gingival biopsies. 10 healthy gingiva and 30 inflammed gingiva was resected by clinical crown lengthening and modified Widman flap operation, respectively. Leukocyte entry into tissues at sites of inflammation is controlled by the interaction between adhesion molecule and endothelium. Because of rapid and severe destructive periodontal disease that is remarkable leukocyte adhesion deficiency, it is very important to unerdstand the mechanism of host defence against periodontal disease. The purpose of this investigation was the characterization of the presence and distribution of the adhesion molecule(ICAM-1, VCAM-1 and Evcadherin) in inflammatory gingival tissues compared to clinically healthy gingiva. The results were as followed; 1. ICAM-1 was distributed on basal layer, endothelium and mononuclear cells 10 healthy gingiva but inflammed gingiva was observed stronger stain than healthy gingiva. 2. Rare expression was observed in both group but few positive VCAM-1 cells were investigated in inflammatory gingival tissues 3. E-cadherin was expressed in only epithelium and reduced expression was observed in inflammatory gingival tissues. ICAM-1, VCAM-1 showed more expression in inflammatory tissues compared to healthy gingiva. Conversely, E-cadherin revealed a opposite result. These finding demonstrate a characteristic distribution and degree of adhesion molecule in healthy and inflammatory gingival tissues. But it is suggested that more detail study be progressive associated with leukocyte adhesion molecule to determine characterization of periodontal disease.

  • PDF

토끼 흉부 대동맥 절편의 전기자극에 대한 수축 및 이완반응 (Electrical Stimulation Causes Endothelium-Dependent Relaxation in Isolated Aortic Vessels of the Rabbit)

  • 이석기;최형호;이종운
    • Journal of Chest Surgery
    • /
    • 제28권8호
    • /
    • pp.742-746
    • /
    • 1995
  • The present study was aimed at investigating possible transmitter mechanisms in the endothelial cell layer in regulating the tone of the vascular smooth muscle. The thoracic aorta was isolated from the anesthetized male white rabbits and its helical strips were prepared. Electrical field stimulation was delivered to platinum wire electrodes positioned parallel to the vessel segment preconstricted with phenylephrine [3.5x10-6 mol/L at a distance of 1.5-2.0 mm. The electrical stimulation [70 V, 5 msec, 0.5-200 Hz caused either relaxation only [34% or a biphasic response [prolonged relaxation following a weak and transient contraction, 66% . The relaxation response was frequency- dependent, and at 200 Hz a complete relaxation was noted. Mechanical rubbing of the endothelial layer abolished or greatly attenuated the relaxation. The relaxation was also markedly attenuated in the presence of NG-nitro- L-arginine methyl ester [10-3mol/L or procaine hydrochloride [3.5x10-4mol/L . Tetrodotoxin,guanethidine, atropine or indomethacin failed to block or enhance the relaxation response to electrical field stimulation. It is concluded that the vascular endothelium in the aorta contains diffusible substances that regulates the function of the smooth muscle layer, in which relaxation is more prominent than contraction. Their release by the electrical stimualtion in vitro may not involve classic neuronal transmitter release mechanisms or metabolism of arachidonic acids by cyclooxygenase. The release of the relaxing agents may require an increase in cytosolic calcium level. The chemical nature of the relaxant may be, to a large extent, nitric oxide.

  • PDF

YS 49, a Synthetic Isoquinoline Alkaloid, Protects Sheep Pulmonary Artery Endothelial Cells from tert-butylhydroperoxide-mediated Cytotoxicity

  • Chong, Won-Seog;Kang, Sun-Young;Kang, Young-Jin;Park, Min-Kyu;Lee, Young-Soo;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;ChoiYun, Hye-Sook;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.283-289
    • /
    • 2005
  • Endothelium, particularly pulmonary endothelium, is predisposed to injury by reactive oxygen species (ROS) and their derivatives. Heme oxygenase (HO) has been demonstrated to provide cytoprotective effects in models of oxidant-induced cellular and tissue injuries. In the present study, we investigated the effects of YS 49 against oxidant [tert-butylhydroperoxide (TBH)]-induced injury using cultured sheep pulmonary artery endothelial cells (SPAECs). The viability of SPAECs was determined by quantifying reduction of a fluorogenic indicator Alamar blue. We found that TBH decreased cell viability in a timeand concentration-dependent manner. YS 49 concentration- and time-dependently increased HO-1 induction on SPAECs. As expected, YS 49 significantly decreased the TBH-induced cellular injury. In the presence of zinc protophorphyrin, HO-1 inhibitor, effect of YS 49 was significantly inhibited, indicating that HO-1 plays a protective role for YS 49. Furthermore, YS 49 showed free radical scavenging activity as evidenced by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and inhibition of lipid peroxidation. However, YS 49 did not inhibit apoptosis induced by lipopolysaccharide (LPS) in SPAECs. Taken together, HO-1 induction along with strong antioxidant action of YS 49 may be responsible for inhibition of TBH-induced injury in SPAECs.