• Title/Summary/Keyword: endothelin receptor type A

Search Result 18, Processing Time 0.026 seconds

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • v.34 no.1
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

Pulmonary hypertension in infants with bronchopulmonary dysplasia

  • Kim, Gi-Beom
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.6
    • /
    • pp.688-693
    • /
    • 2010
  • An increase in the number of preterm infants and a decrease in the gestational age at birth have resulted in an increase in the number of patients with significant bronchopulmonary dysplasia (BPD) and secondary pulmonary hypertension (PH). PH contributes significantly to the high morbidity and mortality in the BPD patients. Therefore, regular monitoring for PH by using echocardiography and B-type natriuretic peptide (BNP) or N-terminal-proBNP must be conducted in the BPD patients with greater than moderate degree to prevent PH and to ensure early treatment if PH is present. In the BPD patients with significant PH, multi-modality treatment, including treatment for correcting an underlying disease, oxygen supply, use of diverse selective pulmonary vasodilators (inhaled nitric oxide, inhaled prostacyclins, sildenafil, and endothelin-receptor antagonist) and other methods, is mandatory.

Inhibition Mechanism of Endothelin-l-induced $Ca^{2+}$ Mobilization of Antimelanogenic Ingredient: 1,2-Ο-Diferulylglycerol

  • Lee, K. M.;Park, J. B.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.73-86
    • /
    • 2003
  • Endothelins secreted from keratinocytes are intrinsic madiators for human melanocytes in UVB-induced pigmentation. Antimelanogenic ingredient, 1,2-Ο-diferulylglycerol(SM709) isolated from bamboo extract inhibited the melanin synthesis of Bl6F10 melanoma cells by 62%. To understand the cellular mechanism of antimelanogenic activity of SM709 in human melanocytes, the effects of SM709 on the ET-l-induced $Ca^{2+}$ mobilization were investigated. ET-l receptors in human melanocytes were characterized by using specific antagonist and found that ET-l increased intracellular $Ca^{2+}$ by activating ET-B receptor. SM709 completely blocked the ET-l-induced intracellular $Ca^{2+}$ increase and its inhibitory effect showed dose- and time- dependent manners. To investigate the role of SM709 on intracellular $Ca^{2+}$ store, when the $Ca^{2+}$ store was partially depleted by thapsigargin; a specific inhibitor of ER-type $Ca^{2+}$-ATPase, caffeine-induced $Ca^{2+}$ mobilization did not changed in the presence or absence of SM709, suggesting that SM709 has no effect on the $Ca^{2+}$ store. It is known that LPA receptor and P$_2$ receptor are linked to InsP$_3$ second messenger system. When these receptors in melanocytes were activated by LPA and ATP, the intracellular $Ca^{2+}$ signaling was observed even in the presence of SM709. From the above results, it can be suggested that SM709 has an antimelanogenic activity by antagonizing the ET-B receptor, resulting in subsequent intracellular $Ca^{2+}$ signaling, in UV induced pigmentation.nduced pigmentation.

  • PDF

The Effect of Nonspecific Endothelin-1 Receptor Blocker ($Bosentan^{(R)}$) on Paraquat Induced Pulmonary Fibrosis in Rat (Paraquat에 의한 백서의 폐섬유화증에서 비선택적 Endothelin-1 receptor blocker($Bosentan^{(R)}$)의 치료효과)

  • Jeong, Hye-Cheol;Jung, Ki-Hwan;Kim, Byung-Gyu;Lee, Seung-Heon;Kim, Min-Kyung;Kim, Chung-Yeul;Park, Sang-Myun;Lee, Sin-Hyung;Shin, Chol;Cho, Jae-Youn;Shim, Jae-Jeong;In, Kwang-Ho;Kim, Han-Gyum;Yoo, Se-Hwa;Kang, Kyung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.2
    • /
    • pp.182-195
    • /
    • 2001
  • Background : Idiopathic pulmonary fibrosis(IPF) is a devastating illness for which there is little effective treatment. The key cytokines currently implicated in the fibrotic process are the transforming growth factor-${\beta}_1$(TGF-${\beta}_1$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), endothelin-1(ET-1) and interferon-$\gamma$(IFN-$\gamma$). The rat model for paraquat-induced pulmonary fibrosis was chosen to investigate the role of ET-1 in this disease. Both ET-1 and TGF-${\beta}_1$ expression in lung lesions were examined using immunohistochemical staining. After $Bosentan^{(R)}$ administration, an orally active ET-$l_A$ and ET-$1_B$ receptor antagonist, the degree of pulmonary fibrosis and ET-1 and TGF-${\beta}_1$ expression were analyzed. Method : Sprague-Dawley rats were divided into three groups, the control group, the fibrosis group, and the fibrosis-$Bosentan^{(R)}$-treated group. The animals were sacrificed periodically at 1, 3, 5, 7, 10, 14 days after administering saline or paraquat. The effects between groups were compared with the results of light microscopy and immunohistochemical staining for ET-1 and TGF-${\beta}_1$. The degree of fibrosis was evaluated by H&E and Masson's trichrome staining, which were graded by a computerized image analyzer. The degree of immunohistochemical staining was categorized by a semi-quantitative analysis method. Results : The lung collagen content had increased in the paraquat instillated animals by day 3, and continued to increase up to day 14. A daily treatment by gavage with $Bosentan^{(R)}$ (100mg/kg) did not prevent the increase in collagen deposition on the lung that was induced by paraquat instillation. There were increased immunohistochemical stains of ET-1 on the exudate, macrophages, vascular endothelial cells and pneumocytes in the paraquat instillated group. Furthermore, TGF-${\beta}_1$ expression was higher on the exudate, macrophages, some inflammatory cells, pneumocytes( type I, and II), vascular endothelium and the respiratory epithelial cells around the fibrotic area. After Bosentan treatment, there were no definite changes in ET-1 and TGF-${\beta}_1$ expression. Conclusion : Fibrosis of the Paraquat instillated group was more advanced when compared with the control group. In addition, there was increased ET-1 and TGF-${\beta}_1$ expression around the fibrotic area. ET-1 is associated with lung fibrosis but there was little effect of the ET-1 receptor blocker($Bosentan^{(R)}$) on antifibrosis.Background : Idiopathic pulmonary fibrosis(IPF) is a devastating illness for which there is little effective treatment. The key cytokines currently implicated in the fibrotic process are the transforming growth factor-${\beta}_1$(TGF-${\beta}_1$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), endothelin-1(ET-1) and interferon-$\gamma$(IFN-$\gamma$). The rat model for paraquat-induced pulmonary fibrosis was chosen to investigate the role of ET-1 in this disease. Both ET-1 and TGF-${\beta}_1$ expression in lung lesions were examined using immunohistochemical staining. After $Bosentan^{(R)}$ administration, an orally active ET-$1_A$ and ET-$1_B$ receptor antagonist, the degree of pulmonary fibrosis and ET-1 and TGF-${\beta}_1$ expression were analyzed. Method : Sprague-Dawley rats were divided into three groups, the control group, the fibrosis group, and the fibrosis-$Bosentan^{(R)}$-treated group. The animals were sacrificed periodically at 1, 3, 5, 7, 10, 14 days after administering saline or paraquat. The effects between groups were compared with the results of light microscopy and immunohistochemical staining for ET-1 and TGF-${\beta}_1$. The degree of fibrosis was evaluated by H&E and Masson's trichrome staining, which were graded by a computerized image analyzer. The degree of immunohistochemical staining was categorized by a semi-quantitative analysis method. Results : The lung collagen content had increased in the paraquat instillated animals by day 3, and continued to increase up to day 14. A daily treatment by gavage with $Bosentan^{(R)}$ (100mg/kg) did not prevent the increase in collagen deposition on the lung that was induced by paraquat instillation. There were increased immunohistochemical stains of ET-1 on the exudate, macrophages, vascular endothelial cells and pneumocytes in the paraquat instillated group. Furthermore, TGF-${\beta}_1$ expression was higher on the exudate, macrophages, some inflammatory cells, pneumocytes( type I, and II), vascular endothelium and the respiratory epithelial cells around the fibrotic area. After Bosentan treatment, there were no definite changes in ET-1 and TGF-${\beta}_1$ expression. Conclusion : Fibrosis of the Paraquat instillated group was more advanced when compared with the control group. In addition, there was increased ET-1 and TGF-${\beta}_1$ expression around the fibrotic area. ET-1 is associated with lung fibrosis but there was little effect of the ET-1 receptor blocker($Bosentan^{(R)}$) on antifibrosis.

  • PDF

NOX4/Src regulates ANP secretion through activating ERK1/2 and Akt/GATA4 signaling in beating rat hypoxic atria

  • Wu, Cheng-zhe;Li, Xiang;Hong, Lan;Han, Zhuo-na;Liu, Ying;Wei, Cheng-xi;Cui, Xun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.159-166
    • /
    • 2021
  • Nicotinamide adenine dinucleotide phosphate oxidases (NOXs) are the major enzymatic source of reactive oxygen species (ROS). NOX2 and NOX4 are expressed in the heart but its role in hypoxia-induced atrial natriuretic peptide (ANP) secretion is unclear. This study investigated the effect of NOX on ANP secretion induced by hypoxia in isolated beating rat atria. The results showed that hypoxia significantly upregulated NOX4 but not NOX2 expression, which was completely abolished by endothelin-1 (ET-1) type A and B receptor antagonists BQ123 (0.3 μM) and BQ788 (0.3 μM). ET-1-upregulated NOX4 expression was also blocked by antagonists of secreted phospholipase A2 (sPLA2; varespladib, 5.0 μM) and cytosolic PLA2 (cPLA2; CAY10650, 120.0 nM), and ET-1-induced cPLA2 expression was inhibited by varespladib under normoxia. Moreover, hypoxia-increased ANP secretion was evidently attenuated by the NOX4 antagonist GLX351322 (35.0 μM) and inhibitor of ROS N-Acetyl-D-cysteine (NAC, 15.0 mM), and hypoxia-increased production of ROS was blocked by GLX351322. In addition, hypoxia markedly upregulated Src expression, which was blocked by ET receptors, NOX4, and ROS antagonists. ET-1-increased Src expression was also inhibited by NAC under normoxia. Furthermore, hypoxia-activated extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) were completely abolished by Src inhibitor 1 (1.0 μM), and hypoxia-increased GATA4 was inhibited by the ERK1/2 and Akt antagonists PD98059 (10.0 μM) and LY294002 (10.0 μM), respectively. However, hypoxia-induced ANP secretion was substantially inhibited by Src inhibitor. These results indicate that NOX4/Src modulated by ET-1 regulates ANP secretion by activating ERK1/2 and Akt/GATA4 signaling in isolated beating rat hypoxic atria.

Ginsenoside Rg3, a promising agent for NSCLC patients in the pandemic: a large-scale data mining and systemic biological analysis

  • Zhenjie Zhuang;Qianying Chen;Xiaoying Zhong;Huiqi Chen;Runjia Yu;Ying Tang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.291-301
    • /
    • 2023
  • Introduction: Non-small cell lung cancer (NSCLC) patients are particularly vulnerable to the Coronavirus Disease-2019 (COVID-19). Currently, no anti-NSCLC/COVID-19 treatment options are available. As ginsenoside Rg3 is beneficial to NSCLC patients and has been identified as an entry inhibitor of the virus, this study aims to explore underlying pharmacological mechanisms of ginsenoside Rg3 for the treatment of NSCLC patients with COVID-19. Methods: Based on a large-scale data mining and systemic biological analysis, this study investigated target genes, biological processes, pharmacological mechanisms, and underlying immune implications of ginsenoside Rg3 for NSCLC patients with COVID-19. Results: An important gene set containing 26 target genes was built. Target genes with significant prognostic value were identified, including baculoviral IAP repeat containing 5 (BIRC5), carbonic anhydrase 9 (CA9), endothelin receptor type B (EDNRB), glucagon receptor (GCGR), interleukin 2 (IL2), peptidyl arginine deiminase 4 (PADI4), and solute carrier organic anion transporter family member 1B1 (SLCO1B1). The expression of target genes was significantly correlated with the infiltration level of macrophages, eosinophils, natural killer cells, and T lymphocytes. Ginsenoside Rg3 may benefit NSCLC patients with COVID-19 by regulating signaling pathways primarily involved in anti-inflammation, immunomodulation, cell cycle, cell fate, carcinogenesis, and hemodynamics. Conclusions: This study provided a comprehensive strategy for drug discovery in NSCLC and COVID-19 based on systemic biology approaches. Ginsenoside Rg3 may be a prospective drug for NSCLC patients with COVID-19. Future studies are needed to determine the value of ginsenoside Rg3 for NSCLC patients with COVID-19.

Molecular Changes in Remote Tissues Induced by Electro-Acupuncture Stimulation at Acupoint ST36

  • Rho, Sam-Woong;Choi, Gi-Soon;Ko, Eun-Jung;Kim, Sun-Kwang;Lee, Young-Seop;Lee, Hye-Jung;Hong, Moo-Chang;Shin, Min-Kyu;Min, Byung-Il;Kee, Hyun-Jung;Lee, Cheol-Koo;Bae, Hyun-Su
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.178-183
    • /
    • 2008
  • To investigate the effects of electro-acupuncture (EA) treatment on regions remote from the application, we measured cellular, enzymatic, and transcriptional activities in various internal tissues of healthy rats. The EA was applied to the well-identified acupoint ST36 of the leg. After application, we measured the activity of natural killer cells in the spleen, gene expression in the hypothalamus, and the activities of antioxidative enzymes in the hypothalamus, liver and red blood cells. The EA treatment increased natural killer cell activity in the spleen by approximately 44%. It also induced genes related to pain, including 5-Hydroxytryptamine (serotonin) receptor 3a (Htr3a) and Endothelin receptor type B (Ednrb) in the hypothalamus, and increased the activity of superoxide dismutase in the hypothalamus, liver, and red blood cells. These findings indicate that EA mediates its effects through changes in cellular activity, gene expression, and enzymatic activity in multiple remote tissues. The sum of these alterations may explain the beneficial effects of EA.

Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice

  • Son, Myeongjoo;Oh, Seyeon;Lee, Hye Sun;Choi, Junwon;Lee, Bae-Jin;Park, Joung-Hyun;Park, Chul Hyun;Son, Kuk Hui;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABA-salt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.