• 제목/요약/키워드: endothelial nitric oxide synthase (eNOS)

검색결과 85건 처리시간 0.032초

Expression of Hepatic Vascular Stress Genes Following Ischemiai/Reperfusion and Subsequent Endotoxemia

  • Kim, Sung-Ho;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.769-775
    • /
    • 2004
  • Hepatic ischemia and reperfusion (l/R) predisposes the liver to secondary stresses such as endotoxemia, possibly via dysregulation of the hepatic microcirculation secondary to an imbalanced regulation of the vascular stress genes. In this study, the effect of hepatic I/R on the hepatic vasoregulatory gene expression in response to endotoxin was determined. Rats were subjected to 90 min of hepatic ischemia and 6 h of reperfusion. Lipopolysaccharide (LPS, 1 mg/kg) was injected intraperitoneally after reperfusion. Plasma and liver samples were obtained 6 h after reperfusion for serum aminotransferase assays and RT-PCR analysis of the mRNA for the genes of interest: endothelin-1 (ET-1), its receptors $ET_A$ and $ET_B$, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), heme oxygenase-1 (HO-1), cyciooxygenase-2 (COX-2), and tumor necrosis factor-a (TNF-${\alpha}$). The activities of serum aminotransferases were significantly increased in the I/R group. This increase was markedly potentiated by LPS treatment. The ET-1 mRNA was increased by LPS alone, and this increase was significantly greater in both the I/R alone and I/R + LPS groups compared to the sham. There were no significant differences in ETA receptor mRNA levels among any of the experimental groups. $ET_B$ mRNA was increased by both LPS alone and I/R alone, with no significant difference between the I/R alone and I/R + LPS groups. The eN OS and HO-1 transcripts were increased by I/R alone and further increased by I/R + LPS. The iNOS mRNA levels were increased by I/R alone, but increased significantly more by both LPS alone and I/R + LPS compared to I/R alone. The TNF-${\alpha}$ mRNA levels showed no change with I/R alone, but were increased by both LPS alone and I/R + LPS. The COX-2 expression was increased significantly by I/R alone and significantly more by I/R + LPS. Taken collectively, significantly greater induction of the vasodilator genes over the constriction forces was observed with I/R + LPS. These results may partly explain the increased susceptibility of ischemic livers to injury as a result of endotoxemia.

Apelin-APJ Signaling: a Potential Therapeutic Target for Pulmonary Arterial Hypertension

  • Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.196-201
    • /
    • 2014
  • Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Kr$\ddot{u}$ppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.

진세노사이드의 혈관확장작용과 분자기전 (Ginsenosides-mediated Vascular Relaxation and Its Molecular Mechanisms)

  • 김낙두
    • Journal of Ginseng Research
    • /
    • 제32권2호
    • /
    • pp.89-98
    • /
    • 2008
  • There are increasing evidences in the literatures on the potential role of ginsenosides in treating cardiovascular diseases. In this article, current information about ginsenosides-mediated vascular relaxation are reviewed. From the published studies using isolated organs, cell culture systems and animal models, ginsenosides are shown to relax blood vessels and improve blood flow through diverse mechanisms, including nitric oxide release by activating eNOS phosphorylation via PI3K/Akt and/or ERK1/2 pathways in endothelial cells, induction of inducible nitric oxide synthase through activation of NF-${\kappa}$B, reducing the intracelluar Ca$^{2+}$ levels by activating Ca$^{2+}$-activated K$^{+}$ channels in vascular smooth muscle cells and reducing platelet aggregation by decreasing thromboxane A$_2$ formation and intracelluar Ca$^{2+}$in platelets. In addition, the relevant clinical trials regarding the effects of ginsenosides on the cardiovascular disease are summarized, particulary focusing on managing hypertension and improving thrombotic disorders. Finally, antagonistic effects of ginsenosides on the prostaglandin H$_2$ receptor and scavenging effects on the generation of oxygen-derived free radicals in spontaneously hypertensive rats (SHR) are discussed.

Clinical Implication of Aortic Wall Biopsy in Aortic Valve Disease with Bicuspid Valve Pathology

  • Kim, Yong Han;Kim, Ji Seong;Choi, Jae-Woong;Chang, Hyoung Woo;Na, Kwon Joong;Kim, Jun Sung;Kim, Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • 제49권6호
    • /
    • pp.443-450
    • /
    • 2016
  • Background: Although unique aortic pathology related to bicuspid aortic valve (BAV) has been previously reported, clinical implications of BAV to aortopathy risk have yet to be investigated. We looked for potential differences in matrix protein expressions in the aortic wall in BAV patients. Methods: Aorta specimens were obtained from 31 patients: BAV group (n=27), tricuspid aortic valve (TAV) group (n=4). The BAV group was categorized into three subgroups: left coronary sinus-right coronary sinus (R+L group; n=13, 42%), right coronary sinus-non-coronary sinus (R+N group; n=8, 26%), and anteroposterior (AP group; n=6, 19%). We analyzed the expression of endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP)-9, and tissue inhibitor of matrix metalloproteinase (TIMP)-2. Results: Based on the mean value of the control group, BAV group showed decreased expression of eNOS in 72.7% of patients, increased MMP-9 in 82.3%, and decreased TIMP in 79.2%. There was a higher tendency for aortopathy in the BAV group: eNOS $(BAV:TAV)=53%{\pm}7%:57%{\pm}11%$, MMP-9 $(BAV:TAV)=48%{\pm}10%:38%{\pm}1%$. The AP group showed lower expression of eNOS than the fusion (R+L, R+N) group did; $48%{\pm}5%$ vs. $55%{\pm}7%$ (p=0.081). Conclusion: Not all patients with BAV had expression of aortopathy; however, for patients who had a suspicious form of bicuspid valve, aortic wall biopsy could be valuable to signify the presence of aortopathy.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

흰쥐에 대한 양계(LI5), 양곡(SI5), 지구(TE6) 침자가 Neuronal, Inducible 및 Endothelial Nitric Oxide Synthase와 Nitric Oxide의 변화에 미치는 영향 (Effects of Acupuncture at LI5, SI5, TE6 on Changes of NO and NOSs in Rats)

  • 김영선;최동희;장호선;나창수;최태진;황문현;조주현;이경인;김선민;표병식;윤대환
    • Korean Journal of Acupuncture
    • /
    • 제30권4호
    • /
    • pp.264-271
    • /
    • 2013
  • Objectives : To observe the changes in the expression of neurotransmitters NO and enzymes that create NO, such as nNOS, iNOS and eNOS, upon the needle insertion on river point, one of the five transport points of three yang meridians on the forefoot. Methods : Based on rats, needle was inserted on both sides of LI5, SI5 and TE6, which are river points of three yang meridians on the forefoot, and were retained for five minutes. After the retention, blood was drawn via cardiac puncture and tissues from each point around meridian vessels were extracted to be examined on the changes of the expression of NO, as well as of nNOS, iNOS and eNOS. Results : In terms of the effect on NO creation in tissues, none of the experimental groups showed any significant change compared to the Normal group. In terms of the effect on expression of nNOS within tissues, LI5 and SI5 showed significant increase based on the results of immunohistochemistry. In iNOS within tissues, LI5 and SI5 showed significant increase based on the results of immunohistochemistry. In eNOS within tissues, SI5 showed significant increase based on the results of immunohistochemistry. Conclusions : The effect on the function of NO, nNOS, iNOS and eNOS of needle insertion on the river points of three yang meridians on the forefoot could be observed, and based on this study, it is considered that the effect of needle stimulation on the changes of nervous system could be found out through additional research.

Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

  • Choi, Jin-Hwa;Nguyen, Minh-Phuong;Lee, Dongjin;Oh, Goo-Taeg;Lee, You-Mie
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.487-496
    • /
    • 2014
  • Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout ($AGT^{+/-}$) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of $AGT^{+/-}$ EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in $AGT^{+/-}$ EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-$1{\alpha}$and $-2{\alpha}$ were downregulated in $AGT^{+/-}$ early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-$1{\alpha}$ were suppressed in $AGT^{+/-}$ EPCs. In $AGT^{+/-}$ mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.

온담탕이 고혈압 백서와 인간유래 혈관내피세포주(ECV 304)에 미치는 영향 (An Experimental Study of Effect on ECV 304 Cells, Platelet Rich Plasma and Rats treated with L-NAME by Ondamtang extract)

  • 백일성;박창국;이소연;윤현덕;신오철;박치상
    • 대한한의학방제학회지
    • /
    • 제12권2호
    • /
    • pp.175-202
    • /
    • 2004
  • Nitric oxide(NO) play an important role in normal and pathophysiological cells including as a messenger molecule, neurotransmitter, microbiocidal agent, or dilator of blood vessels and artheriosclerosis, hypertension, myocardial infarction, respectively. To investigate that Ondamtang in the potential contribution of the levels of nitric oxide generated by endothelial nitric oxide synthase (eNOS) and the mechanisms of protection against L-NAME, human ECV304 cells, which normally do not express eNOS, were expressed by L-NAME. L-NAME stimulated rat or cells were found to be resistant to injury and delayed death following the Ondam-tang. Inhibition of nitric oxide synthesis abolished the protective effect against L-NAME, thrombin and collagen exposure. Interestingly, such effects have bee observed during stimulation with agents such as KCl on L-NAME mediate rats, were damaged by the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Cardiovascular diseases is one of the blood vessels and renin-angiotensin system dynfunction. So we studied on herbal medicine that have a relation of vessels endothelium necrosis. In Oriental Medicine, Ondam-tang has been used for disease in relation to cardiovascular system. We studied on the protection and inhibitory effects of cardiovascular diseases in L-NAME induced rat or ECV304 cell lines through the Cell morphological pattern, Tunel assay, LDH activity, heart rate, blood pressure and immunohistochemistric analysis by Ondam-tang. As the result of this study, In group, the anti-apoptosis and necrosis in the cardiovascular system have a potential capacity for prevented, protected and treating the diseases of cardiovascular system, against the necrosis of rat and ECV304 cells with eNOS and calpain expression by L-NAME is promoted.

  • PDF

Association Between Three eNOS Polymorphisms and Cancer Risk: a Meta-analysis

  • Wu, Xun;Wang, Zhi-Feng;Xu, Yin;Ren, Rui;Heng, Bao-Li;Su, Ze-Xuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5317-5324
    • /
    • 2014
  • Polymorphisms in the endothelial nitric oxide synthase (eNOS) gene may influence the risk of cancer, but the results are still debatable. Therefore, we performed a systematic review to provide a more complete picture and conducted a meta-analysis to derive a precise estimation. We searched PubMed, EMBASE, EBSCO, Google Scholar and China National Knowledge Infrastructure (CNKI) databases until April 2014 to identify eligible studies. Thirty-one studies with cancer patients and controls were included in the meta-analysis. Overall, the polled analysis revealed that the T-786C polymorphism was significantly associated with increased cancer risk under multiple genetic models (C vs T: OR=1.135, 95%CI=1.048-1.228; CC vs TT: OR=1.278, 95%CI=1.045-1.562; TC vsTT: OR=1.136, 95%CI=1.023-1.261; CC+TC vs TT: OR=1.159, 95%CI=1.047-1.281; CC vs TC+TT: OR=1.204, 95%CI= 1.003-1.447). G894T was associated with significant risk for females (TT vs GG: OR=1.414, 95%CI=1.056-1.892; TT vs GT+GG: OR=1.356, 95%CI=1.108-1.661) and for breast cancer (T vs G: OR=1.097, 95%CI=1.001-1.203; TT vs GG: OR=1.346, 95%CI=1.012-1.789; TT vs GT+GG: OR=1.269, 95%CI=1.028-1.566). Increased susceptibility was revealed for prostate cancer with 4a/b (ba vs bb: OR=1.338, 95%CI=1.013-1.768; aa+ba vs bb: OR=1.474, 95%CI=1.002-2.170). This meta-analysis indicated that the eNOS T-786C polymorphism is associated with elevated cancer risk; the G894T polymorphism contributes to susceptibility to breast cancer and cancer generally in females; and the 4a/b polymorphism may be associated with prostate cancer risk.

Prior Use of 3-Hydroxy-3-Methyl-Glutaryl-Coenzyme A Reductase Inhibitor, Simvastatin Fails to Improve Outcome after Experimental Intracerebral Hemorrhage

  • Jwa, Cheol-Su;Yi, Hyeong-Joong;Oh, Suck-Jun;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • 제50권5호
    • /
    • pp.403-408
    • /
    • 2011
  • Objective : Contrary to some clinical belief, there were quite a few studies regarding animal models of intracerebral hemorrhage (ICH) $in$ $vivo$ suggesting that prior use of statins may improve outcome after ICH. This study reports the effect of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG CoA) reductase inhibitor, simvastatin given before experimental ICH. Methods : Fifty-one rats were subjected to collagenase-induced ICH, subdivided in 3 groups according to simvastatin treatment modality, and behavioral tests were done. Hematoma volume, brain water content and hemispheric atrophy were analyzed. Immunohistochemical staining for microglia (OX-42) and endothelial nitric oxide synthase (eNOS) was performed and caspase-3 activity was also measured. Results : Pre-simvastatin therapy decreased inflammatory reaction and perihematomal cell death, but resulted in no significant reduction of brain edema and no eNOS expression in the perihematomal region. Finally, prior use of simvastatin showed less significant improvement of neurological outcome after experimental ICH when compared to post-simvastatin therapy. Conclusion : The present study suggests that statins therapy after ICH improves neurological outcome, but prior use of statins before ICH might provide only histological improvement, providing no significant impact on neurological outcome against ICH.