• Title/Summary/Keyword: endothelial nitric oxide synthase (eNOS)

Search Result 85, Processing Time 0.019 seconds

Expression and localization of endothelial and inducible nitric oxide synthase in bovine uterus (소 자궁에서 endothelial nitric oxide synthase(NOS) 및 inducible NOS의 발현)

  • Lee, Yongduk;Kim, Seungjoon;Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.551-554
    • /
    • 2003
  • Nitric oxide synthase (NOS) has been reported in uterus. We examined the expression of the NOS isoforms, constitutive endothelial (eNOS) and inducible NOS (iNOS), in bovine uterus by immunohistochemistry. eNOS immunoreactivity was localized predominantly to the endothelial cells that line uterine microvessels and to endometrial glandular epithelial cells, but was barely detectable in endometrial stromal cells. iNOS immunostaining was detected in glandular epithelial and stromal cells in the endometrium and in the endothelial cells of myometrial blood vessels. These findings suggest that both eNOS and iNOS may play important roles in the physiology of the uterus, possibly by generating NO.

Elevation of Nitric Oxide Synthase Activity by Dimethyladenosine from Silkworm Pupae in Aged Rats

  • Ahn, Mi-Young;Han, Jea-Woong;Hong, Yoo-Na;Hwang, Jae-Sam
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.169-174
    • /
    • 2008
  • This study examined the mechanisms underlying the effects of the vasorelaxation active substance(VAS), dimethyladenosine-5'-L-arabinose, and its partial purification fraction on nitric oxide synthase in improving erectile dysfunction with particular focus on the nitric oxide (NO)-cGMP pathways. Two rat models, 9-month-old SD rats and 11-month-old SD rats, were given VAS(40 mg/kg per day) for 4 days, The aqueous fraction of silworm male pupae extract; semi-purified VAS(100 mg/kg per day) for 10 days, respectively. The NOS activities of the following three enzymes were examined: neuronal NO synthase(nNOS), inducible NOS(iNOS), endothelial NOS(eNOS), vascular endothelial growth factor on endothelial cells(VEGF) and anti-inflammation effect of Tumor necrosis factor-$\alpha$. The results showed increases in the nitric oxide synthase activities. Western blotting of the tissue homogenate showed an increase in the nNOS level in the brain and tongue, and an increase in the endothelial NO synthase(eNOS) level in penis. However, there was little association with VEGF production in HUVEC endothelial cells and no relationship with TNF-$\alpha$ which showed low levels.

Independent Regulation of Endothelial Nitric Oxide Synthase by Src and Protein Kinase A in Mouse Aorta Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.120-126
    • /
    • 2005
  • Endothelial nitric oxide synthase (eNOS) plays a critical role in vascular biology and pathophysiology. Its activity is regulated by multiple mechanisms such as calcium/calmodulin, protein-protein interactions, sub-cellular locations and phosphorylation at various sites. Phosphorylation of eNOS-Ser1177 (based on mouse sequence) has been identified as an important mechanism of eNOS activation. However, signaling pathway leading to it phosphorylation remains controversial. The regulation of eNOS-Ser1177 phosphorylation by Src and protein kinase A (PKA) was investigated in the present study using cultured mouse aorta endothelial cells. Expression of a constitutively active Src mutant in the cells enhanced phosphorylation of eNOS and protein kinase B (Akt). The Src-stimulated phosphorylation was not attenuated by the expression of a dominant negative PKA regulatory subunit. Neither activation nor inhibition of PKA activity had any significant effect on tyrosine phosphorylation of activation or inactivation site in Src. Based on the results of this study, it is suggested that Src/Akt pathway and PKA signaling may regulate eNOS phosphorylation independently. The existence of multiple mechanisms for eNOS phosphorylation may guarantee endothelial nitric oxide production in various cellular contexts which is essential for maintenance of vascular health.

Hypoxia Enhances Nitric Oxide Synthesis by Upregulation of Inducible Nitric Oxide Synthase in Endothelial Cells

  • Rhee, Ki-Jong;Gwon, Sun-Yeong;Lee, Seunghyung
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.180-187
    • /
    • 2013
  • Hypoxia is an integral part of the environment during luteolysis. In this study we examined whether hypoxia could directly stimulate endothelial cells to produce nitric oxide (NO). Endothelial cells were cultured in hypoxic (5% $O_2$) or normoxic (20% $O_2$) conditions and the levels of total NO, inducible NO and endothelial NO was measured. We found that hypoxia but not normoxia upregulated NO production. The increased NO levels correlated with increased inducible NO synthase (iNOS) expression whereas expression of endothelial NOS (eNOS) expression remained constant. Addition of the iNOS specific inhibitor 1400W to hypoxic cultures prevented NO production suggesting that hypoxia-induced NO production in endothelial cells was due mainly to upregulation of iNOS. We also found that prostaglandin $F_{2{\alpha}}$ (PGF) production was unaffected by hypoxia suggesting that upregulation of NO was not due to increased synthesis of PGF. In summary, we report that endothelial cells cultured under hypoxic conditions produce NO via the iNOS pathway. This study provides the importance of the relation between the hypoxic environment and the induction of NO by endothelial cells during regression of the corpus luteum in the ovary.

Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling

  • Shin, Woosung;Yoon, Jeongyeon;Oh, Goo Taeg;Ryoo, Sungwoo
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.64-73
    • /
    • 2013
  • Korean red ginseng water extract (KG-WE) has known beneficial effects on the cardiovascular system via inducting nitric oxide (NO) production in endothelium. Endothelial arginase inhibits the activity of endothelial nitric oxide synthase (eNOS) by substrate depletion, thereby reducing NO bioavailability and contributing to vascular diseases including hypertension, aging, and atherosclerosis. In the present study, we demonstrate that KG-WE inhibits arginase activity and negatively regulates NO production and reactive oxygen species generation in endothelium. This is associated with increased dimerization of eNOS without affecting the protein expression levels of either arginase or eNOS. In a vascular tension assay, when aortas isolated from wild type mice were incubated with KG-WE, NO-dependent enhanced vasorelaxation was observed. Furthermore, KG-WE administered via by drinking water to atherogenic model mice being fed high cholesterol diet improved impaired vascular function. Taken together, these results suggest that KG-WE may exert vasoprotective effects through augmentation of NO signaling by inhibiting arginase. Therefore, KG-WE may be useful in the treatment of vascular diseases derived from endothelial dysfunction, such as atherosclerosis.

The dependence of nitric oxide synthase inhibition caused by cigarette smoking extracton the cellular aging of bovine aortic endothelial cells

  • Le, VuQuynhAnh;Kim, Yang-Hoon;Min, Jiho
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.10.1-10.6
    • /
    • 2014
  • Objectives Cigarette smoking had been recorded as the main cause of impaired endothelium-dependent vasodilation in smokers by reducing nitric oxide (NO), a production of endothelial nitric oxide synthase (eNOS). However, the mechanism of NO impairment via eNOS activity is unclear until now. In this study, cell passage is suggested to be a relevant factor to eNOS expression under cigarette smoking stress. Methods Bovine aortic endothelial cells (BAECs) were chosen as the research subject with passages ranking from 6 to 9 (6P to 9P). After exposure of cigarette smoking extract (CSE) solution, MTT assay and Western blot method were performed to check the cell viability as well as eNOS protein concentration. In these experiments, four concentrations of CSE at 0.5, 1, 2, and 4% were selected for treatment. Results Our results showed that cells almost died at 4% of CSE. Besides, eNOS protein mass had a linear decrease under the increase of CSE concentration. In addition, the effect of CSE on eNOS expression was dissimilar between different passages. Conclusions This study indicated that CSE had effect on both cell viability and eNOS expression. Besides, a reduction in protein mass was matched with the decrease of cell viability due to CSE tress. Last but not least, the response of eNOS protein to different concentration of CSE at different passages was disparate, making the hypothesis about cell passage related inhibition of eNOS caused by CSE solution.

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

p66shc Adaptor Protein Suppresses the Activation of Endothelial Nitric Oxide Synthase in Mouse Embryonic Fibroblasts

  • Lee, Sang-Ki;Kim, Young-Shin;Kim, Cuk-Seong;Son, Sook-Jin;Yoo, Dae-Goon;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.3
    • /
    • pp.155-159
    • /
    • 2006
  • Among the Shc proteins, p66shc is known to be related to oxidative stress responses and regulation of the production of reactive oxygen species (ROS). The present study was undertaken to investigate the role of p66shc on endothelial nitric oxide synthase (eNOS) activity in the mouse embryonic fibroblasts (MEFs). When wild type (WT) or p66shc (-/-) MEFs were transfected with full length of eNOS cDNA, the expression and activity of eNOS protein were higher in the p66shc (-/-) MEFs. These phenomena were reversed by reconstitution of p66shc cDNA transfection in the p66shc (-/-) MEFs. The basal superoxide production in the p66shc (-/-) MEFs was not significantly different from that of WT of MEFs. However, superoxide production induced by NADPH in the p66shc (-/-) MEF was lesser than that in WT MEFs. When compared with WT MEFs, cell lysate of p66shc (-/-) MEFs showed significantly increased H-ras activity without change of endogenous H-ras expression. Our findings suggest the pivotal role of p66shc adaptor protein played in inhibition of endothelial nitric oxide production via modulation of the expression and/or activity of eNOS protein.

Effect of the KH-304 on the Nitric Oxide Synthase Activity and Erectile Dysfunction in Young Rats (KH-304 투여가 흰쥐 음경조직의 Nitric Oxide Synthase활성 및 Erectile dysfunction에 미치는 영향)

  • Lee, Eun-Jeong;Lee, Hyun-Ji;Kim, Hee-Seok;Hwang, Sung-Yeoun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.680-684
    • /
    • 2006
  • This study was designed to investigate effects of KH-304 in improving erectile dysfunction (ED), particularly in terms of nitric oxide (NO)-cGMP pathways. After oral administration of the KH-304 water extract, 1OOmg, 300mg, 500mg or 700mg per 1 kg of Dody weigh for 10days, We examined the expression and activity of two enzyme: neuronal NO synthase (nNOS), endothelial NO synthase (eNOS) and that act upon the major NO-cGMP signaling pathway in penile tissue. Effect of KH-304 on COMP degradation was also examined using bovine vascular smooth muscle cells pretreated with an NO donor, S-nitroso-N-Acetylpenicillamine (SNAP), Also, it examined the endothelial NO synthase (eNOS) for seaching effecting period (100mg, 300mg/kg for 10 and 30days) and peak intracavernous pressures (ICPS) in penile tissues rabbit copus cavernosum contracted by 10-6 M phenylephrine. The severely reduced peak intracavernous pressures (ICPS) in penile tissues were restored completely after KH-304 treatment, and KH-304 treatment significantly made the latency period earlier. Furthermore, the penile expression levels of nNOS, eNOS dependent NOS activities and COMP concentrations were increased significantly in the KH-304 100, 300mg treated rats. These results suggest that KH-304 with high expression of NOS may be useful in erectile dysfunction.

Immunoelectron Microscopic Study on the Nitric Oxide Synthase in Rat Salivary Glands (흰쥐 침샘의 Nitric Oxide Synthase에 관한 면역전자현미경적 연구)

  • Lee, Young-Hwan;Ko, Jeong-Sik;Park, Dae-Kyoon;Park, Kyung-Ho
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.221-233
    • /
    • 2008
  • Endogenous nitric oxide (NO) has been known to regulate many physiological and pathological processes, especially the glandular secretion and blood flow. However, nitric oxide synthase (NOS) responsible for NO synthesis has not been well studied ultrastructurally in rat salivary gland. The present study was performed to investigate the distribution of nitric Oxide synthase isoforms (endothelial. neuronal, and inducible NOS). Immunoelectron microscopic study, using monoclonal mouse anti-endothelial NOS, anti-neuronal NOS, and anti-inducible NOS, was performed in the salivary gland of rat. Endothelial NOS (eNOS)-positive immunoreactivities were most prominent in the secretory granules of serous cells of the salivary gland of the rat. Immunoreactivities were well concentrated on serous secretory granules in the serous cells. However, weak eNOS-positive immunoreactivity was observed in the mucous secretory granules of the mucous cells. Positive endothelial NOS (eNOS) immunoreactivities were most prominent in the secretory granules of intralobular ducts. Ductal secretory granules and acinar serous secretory granules have a similar pattern of labeling as eNOS suggestings. Neural NOS (nNOS)-positive immunoreactivity was not detected in duct systems or in acinar cells. Inducible NOS (iNOS)-positive immunoreactivity was not seen in acinar and ductal cells. These results reveal the presence of eNOS in the salivary gland of the rat, which may be related with regulation of the glandular secretion and blood flow through the gland.