• 제목/요약/키워드: endothelial cell

검색결과 1,011건 처리시간 0.026초

Zinc deficiency decreased cell viability both in endothelial EA.hy926 cells and mouse aortic culture ex vivo and its implication for anti-atherosclerosis

  • Cho, Young-Eun;Choi, Jee-Eun;Alam, Md. Jahangir;Lee, Man-Hyo;Sohn, Ho-Yong;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • 제2권2호
    • /
    • pp.74-79
    • /
    • 2008
  • Zinc plays a protective role in anti-atherosclerosis but the clear mechanism has not been proposed yet. In the present study, we evaluated whether zinc modulates atherosclerotic markers, VACM-1 and ICAM-1 and cell viability both in endothelial cells in vitro and mouse aortic cell viability ex vivo. In study 1, as in vitro model, endothelial EA.hy926 cells were treated with $TNF{\alpha}$ for 5 hours for inducing oxidative stress, and then treated with Zn-adequacy ($15\;{\mu}M$ Zn) or Zn-deficiency ($0\;{\mu}M$ Zn) for 6 hours. Pro-atherosclerosis factors, VCAM-1 and ICAM-1 mRNA expression and cell viability was measured. In study 2, as ex vivo model, mouse aorta ring was used. Mourse aorta was removed and cut in ring then, cultured in a 96-well plate. Aortic ring was treated with various $TNF{\alpha}$ (0-30 mg/ml) and intracellular zinc chelator, N, N, N', N', -tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, $0-30\;{\mu}M$) for cellular zinc depletion for 2 days and then cell viability was measured. The results showed that in in vitro study, Zn-adequate group induced more VCAM-1 & ICAM-1 mRNA expression than Zn-deficient group during 6-hour zinc treatment post-5 hour TNF-$\alpha$ treatment, unexpectedly. These results might be cautiously interpreted that zinc would biologically induce the early expression of anti-oxidative stress through the increased adhesion molecule expression for reducing atherosclerotic action, particularly under the present 6-hour zinc treatment. In ex vivo, mouse aortic ring cell viability was decreased as TNF-$\alpha$ and TPEN levels increased, which suggests that mouse aortic blood vessel cell viability was decreased, when oxidative stress increases and cellular zinc level decreases. Taken together, it can be suggested that zinc may have a protective role in anti-atherosclerosis by cell viability in endothelial cells and aorta tissue. Further study is needed to clarify how pro-atherosclerosis molecule expression is modulated by zinc.

티모신베타4에의한 선모충(Trichinella spiralis) 감염의 혈관신생 유도 기작 (Angiogenic Induction by Trichinella spiralis Infection through Thymosin β4)

  • 옥미선;차희재
    • 생명과학회지
    • /
    • 제23권9호
    • /
    • pp.1177-1182
    • /
    • 2013
  • 선모충(Trichinella spiralis)은 감염 후 nurse cell 형성과정에서 영양분 공급 및 배설을 위해 혈관신생인자인 vascular endothelial cell growth factor (VEGF)를 유도하여 혈관신생을 촉진한다. 하지만 이러한 과정 중 선모충이 어떻게 VEGF의 발현을 유도하는지에 대해서는 아직 밝혀지지 않았다. Nurse cell 형성 과정에서 저산소현상이 발생되고 이러한 저산소 현상이 VEGF의 발현을 유도할 것이라는 제안이 있지만 실제 nurse cell 형성 과정에 저산호 현상이 일어나는지도 조사되지 않았으며 저산소 현상이 실제 VEGF를 통한 혈관신생을 유도하는지도 규명되지 않았다. 최근 연구결과에 의하면 VEGF의 발현을 유도하는 티모신베타4 단백질이 초기의 선모충 감염 nurse cell에서 강력하게 유도되는 것이 관찰되었다. 게다가 저산소 현상이 nurse cell 형성 과정에서 관찰되지 않았고 면역세포들이 응집되어 있는 파괴되는 nurse cell에서만 관찰되는 것이 밝혀졌다. 이러한 결과는 티모신베타4가 저산소 현상과 무관하게 선모충 감염 nurse cell에서의 VEGF 유도 및 혈관신생을 유도할 가능성을 제시해 준다.

혈관내피세포 채취의 원천으로 인간 지방조직의 활용 (Use of Human Adipose Tissue as a Source of Endothelial Cells)

  • 박봉욱;하영술;김진현;조희영;정명희;김덕룡;김욱규;김종렬;장중희;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권4호
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

Sitagliptin attenuates endothelial dysfunction independent of its blood glucose controlling effect

  • Chang, Xin-Miao;Xiao, Fei;Pan, Qi;Wang, Xiao-Xia;Guo, Li-Xin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.425-437
    • /
    • 2021
  • Although the contributions of sitagliptin to endothelial dysfunction in diabetes mellitus were previously reported, the mechanisms still undefined. Autophagy plays an important role in the development of diabetes mellitus, but its role in diabetic macrovascular complications is unclear. This study aims to observe the effect of sitagliptin on macrovascular endothelium in diabetes and explore the role of autophagy in this process. Diabetic rats were induced through administration of high-fat diet and intraperitoneal injection of streptozotocin. Then diabetic rats were treated with or without sitagliptin for 12 weeks. Endothelial damage and autophagy were measured. Human umbilical vein endothelial cells were cultured either in normal glucose or in high glucose medium and intervened with different concentrations of sitagliptin. Rapamycin was used to induce autophagy. Cell viability, apoptosis and autophagy were detected. The expressions of proteins in c-Jun N-terminal kinase (JNK)-Bcl-2-Beclin-1 pathway were measured. Sitagliptin attenuated injuries of endothelium in vivo and in vitro. The expression of microtubuleassociated protein 1 light chain 3 II (LC3II) and beclin-1 were increased in aortas of diabetic rats and cells cultured with high-glucose, while sitagliptin inhibited the over-expression of LC3II and beclin-1. In vitro pre-treatment with sitagliptin decreased rapamycin-induced autophagy. However, after pretreatment with rapamycin, the protective effect of sitagliptin on endothelial cells was abolished. Further studies revealed sitagliptin increased the expression of Bcl-2, while inhibited the expression of JNK in vivo. Sitagliptin attenuates injuries of vascular endothelial cells caused by high glucose through inhibiting over-activated autophagy. JNK-Bcl-2-Beclin-1 pathway may be involved in this process.

인조혈관재료 표면에 도포된 혈관내피세포의 생리적 변화에 관한 연구 (Physiological Function of Endothelial Cells Cultured on Polyurethsne Coated by ECM)

  • 이윤신;김용배
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권2호
    • /
    • pp.255-262
    • /
    • 1996
  • Antithrombogenic surFace is one of the most important things to the artificial vascular prostheses. This problem will be solved if the surface of prosthesis is covered with endothelial cells. The attachment and the growth of endothelial cells onto vascular prosthesis are very difficult. So many studies have been concentrated on the attachement of endothelial cell. But no good performance of the in uiwo experiments has been shown until now. In this study, we used the whole extracellular matrix (ECM) excreted from fibroblasts as an underlying matrix, and the endothelial cells were seeded to obtain the long term patency of vascular graft(i.e., for the patent 8 week implanted wafts in the animal model of rat). In order to study the antithrombogenic functions of cultured endothelial cells, prostaglandin(PGF 1 a) synthesis and platelet adhesion were assayed. The concentration of PGF a of stimulated group was sisnificantly higher than that of control group(21.97 $\pm$ 3.45 vs 4.93 $\pm$0.71 pg/1000 cells). The platelet adhesion of the polyurethane sheet covered with endothelial cells was lower than that of polyurethane sheet or sheet covered with ECM(1.04$\pm$0.28, 2.87$\pm$0.77, 2.89$\pm$0.70, % radioactivities, respectively). Endothelial cells grew well on polyurethane coated with ECM, synthesized the prostacyclin and functioned well as antithrombogenic. Therefore the endothelialization onto the ECM excreted from fibroblasts may be a good method for the vfudig prosthesis.

  • PDF

Proteomic Analysis of a Rat Cerebral Ischemic Injury Model after Human Cerebral Endothelial Cell Transplantation

  • Choi, Tae-Min;Yun, Misun;Lee, Jung-Kil;Park, Jong-Tae;Park, Man-Seok;Kim, Hyung-Seok
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권6호
    • /
    • pp.544-550
    • /
    • 2016
  • Objective : Cerebral endothelial cells have unique biological features and are fascinating candidate cells for stroke therapy. Methods : In order to understand the molecular mechanisms of human cerebral endothelial cell (hCMEC/D3) transplantation in a rat stroke model, we performed proteomic analysis using 2-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Protein expression was confirmed by quantitative real-time PCR and Western blot. Results : Several protein spots were identified by gel electrophoresis in the sham, cerebral ischemia (CI), and CI with hCMEC/D3 treatment cerebral ischemia with cell transplantation (CT) groups, and we identified 14 differentially expressed proteins in the CT group. Proteins involved in mitochondrial dysfunction (paraplegin matrix AAA peptidase subunit, SPG7), neuroinflammation (peroxiredoxin 6, PRDX6), and neuronal death (zinc finger protein 90, ZFP90) were markedly reduced in the CT group compared with the CI group. The expression of chloride intracellular channel 4 proteins involved in post-ischemic vasculogenesis was significantly decreased in the CI group but comparable to sham in the CT group. Conclusion : These results contribute to our understanding of the early phase processes that follow cerebral endothelial cell treatment in CI. Moreover, some of the identified proteins may present promising new targets for stroke therapy.

Effects of Bisphosphonates on Glucose Transport in a Conditionally Immortalized Rat Retinal Capillary Endothelial Cell Line (TR-iBRB Cells)

  • Lee, Na-Young;Park, Hyun-Joo;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.94-98
    • /
    • 2016
  • The objective of the present study was to elucidate the effect of bisphosphonates, anti-osteoporosis agents, on glucose uptake in retinal capillary endothelial cells under normal and high glucose conditions. The change of glucose uptake by pre-treatment of bisphosphonates at the inner blood-retinal barrier (iBRB) was determined by measuring cellular uptake of $[^3H]3$-O-methyl glucose (3-OMG) using a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB cells) under normal and high glucose conditions. $[^3H]3$-OMG uptake was inhibited by simultaneous treatment of unlabeled D-glucose and 3-OMG as well as glucose transport inhibitor, cytochalasin B. On the other hand, simultaneous treatment of alendronate or pamidronate had no significant inhibitory effect on $[^3H]3$-OMG uptake by TR-iBRB cells. Under high glucose condition of TR-iBRB cells, $[^3H]3$-OMG uptake was increased at 48 h. However, $[^3H]3$-OMG uptake was decreased significantly by pre-treatment of alendronate or pamidronate compared with the values for normal and high glucose conditions. Moreover, geranylgeraniol (GGOH), a mevalonate pathway intermediate, increased the uptake of $[^3H]3$-OMG reduced by bisphosphonates pre-treatment. But, pre-treatment of histamine did not show significant inhibition of $[^3H]3$-OMG uptake. The glucose uptake may be down regulated by inhibiting the mevalonate pathway with pre-treatment of bisphosphonates in TR-iBRB cells at high glucose condition.

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

  • Lee, Na-Young;Rieckmann, Peter;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.293-298
    • /
    • 2012
  • The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.

Edge Complement of the Cornea's Endothelial Cell Using Energy Function

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • 제5권2호
    • /
    • pp.155-158
    • /
    • 2007
  • An area distribution of Corneal Endothelial Cell(CEC) include important clinical information. In this paper, we present a two-step processing method of contour complement for the CEC. In the first step; we apply not only conventional Laplasian Gaussian filters(LGF) but also three-arrow-shaped LGFs which is newly developed to extract vertices of hexagonal shapes. In the second step; we complement the lacking part of CEC by using an energy minimum algorithm. Using the results, we measure areas of CEC.

Blood-neural barrier: its diversity and coordinated cell-to-cell communication

  • Choi, Yoon-Kyung;Kim, Kyu-Won
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.345-352
    • /
    • 2008
  • The cerebral microvessels possess barrier characteristics which are tightly sealed excluding many toxic substances and protecting neural tissues. The specialized blood-neural barriers as well as the cerebral microvascular barrier are recognized in the retina, inner ear, spinal cord, and cerebrospinal fluid. Microvascular endothelial cells in the brain closely interact with other components such as astrocytes, pericytes, perivascular microglia and neurons to form functional 'neurovascular unit'. Communication between endothelial cells and other surrounding cells enhances the barrier functions, consequently resulting in maintenance and elaboration of proper brain homeostasis. Furthermore, the disruption of the neurovascular unit is closely involved in cerebrovascular disorders. In this review, we focus on the location and function of these various blood-neural barriers, and the importance of the cell-to-cell communication for development and maintenance of the barrier integrity at the neurovascular unit. We also demonstrate the close relation between the alteration of the blood-neural barriers and cerebrovascular disorders.