• Title/Summary/Keyword: end-plate connections

검색결과 82건 처리시간 0.023초

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

Experimental behaviour of extended end-plate composite beam-to-column joints subjected to reversal of loading

  • Hu, Xiamin;Zheng, Desheng;Yang, Li
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.307-321
    • /
    • 2006
  • This paper is concerned with the behaviour of steel and concrete composite joints subjected to reversal of loading. Three cruciform composite joint specimens and one bare steel joint specimen were tested so that one side of the beam-to-column connection was under negative moment and another side under positive moment. The steelwork beam-to-column connections were made of bolted end plate with an extended haunch section. Composite slabs employing metal decking were used for all the composite joint specimens. The moment-rotation relationships for the joints were obtained experimentally. Details of the experimental observations and results were reported.

반강접 접합부를 적용한 초대형 부유식 구조물 상부구조체의 2차 탄성해석 (Second Order Elastic Analysis of Superstructures on Very Large Floating Structure with Semi-Rigid Connections)

  • 송화철;이은숙
    • 한국항해항만학회지
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2003
  • 초대형 부유식 구조무? 상부구조는 육상 구조물과는 달리 파량하중의 영향을 받기 때문에 하부부체의 변형에 의해서 상부구조물에는 부가 모멘트가 크게 발생한다. 이와 같은 부가모멘트의 저감을 위하여 보-기둥 접합부에 반강접의 도입에 관한 연구는 시작단계이며 반강접의 비선형 거동을 고려한 상부구조물의 연구는 초기단계이다. 본 논문에서는 초대형 부유식 구조물의 상부구조물에 정적하중과 진폭의 크기가 다른 파랑하중이 동시에 작용할 경우 강접 골조와 부분적으로 반강접 접합부가 사용된 세 가지 접합부 종류에 대한 2차 탄성해석을 수행하였다. 접합부는 웨브에 더블 앵글을 가진 상하 앵글(TSD) 접합과 확장 엔드 플레이트 접합 그리고 각형강관 외다이아프램 접합부를 적용하였으며 중고층 구조물에 파랑하중이 작용할 경우 반강접 접합부의 위치에 따른 모멘트와 수평변위의 응답특성에 대하여 연구하였다.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.

P.E.B 시스템 강골조에서 H형강 기둥 - Rafter 접합부의 구조성능 (Structural Performance of H-shaped Column-Rafter Connection in the P.E.B Systematic Steel Frames)

  • 김종성
    • 한국강구조학회 논문집
    • /
    • 제17권3호통권76호
    • /
    • pp.347-356
    • /
    • 2005
  • 최근 들어 강구조 공장건축은 상당부분 P.E.B.시스템으로 지어지고 있으나 관련기술이 대부분 외국에서 수입된 것으로 전용프로그램(예, MBS, LTI 등)에만 의존하고 있고 국내의 설계지침이 없어서 AISC-ASD에 의해 설계하고 있다. 또한 P.E.B.골조의 구조적 거동을 검토한 연구 및 H형강을 이용한 요소기술 개발이 부족한 실정에 있다 특히, 기둥-보(rafter) 접합부는 Extended type end plate에 의한 접합에만 의존하여 과다설계의 경향이 있으므로. 접합부에 대한 구조적 검토가 필요하다. 따라서 이 연구에서는 P.E.B.시스템 공장건물에서 H형강-보(rafter)의 접합부(Extended/Flush type)의 구조성능을 실험적으로 평가하여 구조적, 경제적으로 우수한 P.E.B. 시스템 골조의 설계를 위한 기초자료를 제공하고자 한다.

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Behaviour and design of demountable steel column-column connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.429-448
    • /
    • 2016
  • This paper presents a finite element (FE) model for predicting the behaviour of steel column-column connections under axial compression and tension. A robustness approach is utilised for the design of steel column-column connections. The FE models take into account for the effects of initial geometric imperfections, material nonlinearities and geometric nonlinearities. The accuracy of the FE models is examined by comparing the predicted results with independent experimental results. It is demonstrated that the FE models accurately predict the ultimate axial strengths and load-deflection curves for steel column-column connections. A parametric study is carried out to investigate the effects of slenderness ratio, contact surface imperfection, thickness of cover-plates, end-plate thickness and bolt position. The buckling strengths of steel column-column connections with contact surface imperfections are compared with design strengths obtained from Australian Standards AS4100 (1998) and Eurocode 3 (2005). It is found that the column connections with maximum allowable imperfections satisfy the design requirements. Furthermore, the steel column-column connections analysed in this paper can be dismantled and reused safely under typical service loads which are usually less than 40% of ultimate axial strengths. The results indicate that steel column-column connections can be demounted at 50% of the ultimate axial load which is greater than typical service load.

Large scale fire test on a composite slim-floor system

  • Bailey, C.G.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.153-168
    • /
    • 2003
  • This paper discusses the results and observations from a large-scale fire test conducted on a slim floor system, comprising asymmetric beams, rectangular hollow section beams and a composite floor slab. The structure was subjected to a fire where the fire load (combustible material) was higher that that found in typical office buildings and the ventilation area was artificially controlled during the test. Although the fire behaviour was not realistic it was designed to follow as closely as possible the time-temperature response used in standard fire tests, which are used to assess individual structural members and forms the bases of current fire design methods. The presented test results are limited, due to the malfunction of the instrumentation measuring the atmosphere and member temperatures. The lack of test data hinders the presentation of definitive conclusions. However, the available data, together with observations from the test, provides for the first time a useful insight into the behaviour of the slim floor system in its entirety. Analysis of the test results show that the behaviour of the beam-to-column connections had a significant impact on the overall structural response of the system, particularly when the end-plate of one of the connections fractured, during the fire.

Analytical investigation of thin steel plate shear walls with screwed infill plate

  • Vatansever, Cuneyt;Berman, Jeffrey W.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1145-1165
    • /
    • 2015
  • A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.