• 제목/요약/키워드: end-effector

검색결과 367건 처리시간 0.024초

산업용로보트와 CNC 공작기계를 위한 소프트웨어 가감속 방법 (Software Acceleration/Deceleration Methods for Industrial Robots and CNC Machine Tools)

  • 김동일;송진일;김성권
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.562-572
    • /
    • 1992
  • In this paper, we propose software algorithms which provide acceleration/deceleration characteristics essential to high dynamic performance at the transient states where industrial robots or CNC machine tools start and stop. Software acceleration/deceleration methods are derived from the mathematical analyses of typical hardware systems controlling acceleration/deceleration. These methods make servo motors, which drive axes of motion, start and stop smoothly without vibration in the repeated tools. The path error, which is one of the most significant factors in the performance evaluation of industrial robots or CNC machine tools, is analyzed for linear, exponential, and parabolic acceleration/deceleration algorithms in case of circular interpolation. The analyses show that path error consists of the distance between the required path and generated one through acceleration/deceleration, and that between the generated one through acceleration/deceleration algorithm and the actual one of the end effector of the industrial robot or tool of the CNC equipment.

  • PDF

Krasovskii 정리를 이용한 로보트 매니퓰레이터의 강건제어에 관한 새로운 접근 (A new approach on the robust control for robot manipulator using Krasovskii theorem)

  • Kim, Chong-Soo;Park, Sei-Seung;Park, Chong-Kug
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.590-595
    • /
    • 1996
  • The robust control technique is generally the iterative design method to determine a robust control for perturbed system with prescribed range of perturbation based on the robust stability measure. However, robot manipulator has the structured pertubation and the unstructured one. This paper proposes the robust technique for designing controller such that the trajectory of end-effector of robot manipulator tracks asymptotically the desired trajectory for all allowable variations in the manipulator's parameter. For satisfying asymptotical stability though we can not know the bound of perturbations and the parameter variations, the relation between the unknown parameter and the parameter of nominal system can be derived from Krasovskii theorem and we construct the new robust control using that relation. (author). 12 refs., 6 figs.

  • PDF

유전알고리즘을 적용한 로봇의 장애물 충돌회피 및 경로추정 (Collision Avoidance of Obstacles and Path Planning of the Robot applied Genetic Algorithm)

  • 임진수;김문수;이양무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.3042-3044
    • /
    • 1999
  • This paper presents a method for solving the path planning problem for robot manipulators. The technique allows manipulators to move from a specified starting point to a goal without colliding with objects in two dimensional environment. Approximate cell decomposition with a greedy depth-first search algorithm is used to guide the end effector though Cartesian space and genetic algorithms are used to solve the joint variable for the robot manipulators.

  • PDF

기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구 (The Study on the Control of Robot Manipulator by Modification of Reference Trajectory)

  • 민경원;이종수;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF

3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계 (Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage)

  • 김정현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계 (Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator)

  • 홍성일
    • 한국군사과학기술학회지
    • /
    • 제10권3호
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.

하이브리드 위치/힘 제어방법에 의한 로봇 매니퓰레이터의 제어에 관한 연구 (A Study on Control of Robot Manipulator by Hybrid Position / Force Control)

  • 김현숙;길진수;한상완;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.308-310
    • /
    • 1994
  • Position control for robot manipulator may not suffice when any contacts are made between the end-effector and various environments. Therefore interaction forces must be controlled in tasks performed by robot manipulator. In general, there are two types of force control for robot manipulator. One is a stiffness control and the other is a hybrid position/force control. Stiffness control is that environment can be modeled as a spring and utilizes the desired normal force to determine the desired normal position. Hybrid position/force control, however, can be used for robot manipulator to track position and force trajectories simultaneously. This paper will compare the result of the hybrid position/force control method with that of the stiffness control method.

  • PDF

6자유도 측정 장치를 이용한 병렬 기구의 캘리브레이션 실험 결과 (Experimental Results on Kinematic Calibration of Parallel Manipulator using 6 DOF Measurement Device)

  • 압둘 라우프;아슬람 퍼베즈;김현호;류제하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.197-203
    • /
    • 2005
  • This paper presents kinematic calibration of parallel manipulators with partial pose measurements using a device that measures a rotation of the end-effector along with its position. The device contains an LVDT, a biaxial inclinometer, and a rotary sensor and facilitates automation of the measurement procedure. The device is designed in a modular fashion and links of different lengths can be used. The additional kinematic parameters required for the measurement device are discussed, kinematic relations are derived, and cost function is established to perform calibration with the proposed device. The study is performed for a six degree-of-freedom(DOF) fully parallel HexaSlide Mechanism(HSM). Experimental results show significant improvement in the accuracy of the HSM.

  • PDF

고속 직교 머니풀레이터의 진동 감소를 위한 Two-time scale 제어기 설계 (Two-time Scale Controller Design for Vibration Reduction of High Speed Cartesian Manipulator)

  • 강봉수
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.107-114
    • /
    • 2004
  • This paper presents a two-time scale approach for vibration reduction of a high speed Cartesian manipulator. High speed manipulators would be subject to mechanical vibration due to high inertia forces acting on linkages. To achieve high throughput capability, such motion induced vibration would have to be damped quickly, to reduce settling time of the manipulator end-effector. This paper develops a two-time scale model fer a structurally-flexible Cartesian manipulator. Based on the two-time scale model, a composite controller consisting of a computed torque method for the slow time-scale rigid body subsystem, and a linear quadratic state-feedback regulator for the fast time-scale flexible subsystem, is designed. Simulation results show that the proposed two time-scale controller yields good performance in attenuating structural vibration arising due to excitation from inertial forces.

굴삭기를 이용한 돌쌓기 장치 개발 (Development of Stone Piling-up Device for an Excavator)

  • 권순광;김용석;이동영;이창돈;양순용
    • 유공압시스템학회논문집
    • /
    • 제5권3호
    • /
    • pp.9-14
    • /
    • 2008
  • The application of an excavator can be expanded to various works through change of end-effector. In this paper, a gripper, which can pick up and rotate a fixed formal stone, was developed. The device was designed and produced to pick up and rotate a stone for an excavator. The maximum weight of stone was computed to prevent from reversal in according to each displacement of attachments. The necessary force of a hydraulic cylinder to grip a stone was obtained by simulation.

  • PDF