• 제목/요약/키워드: end-effector

검색결과 367건 처리시간 0.021초

PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어 (Control of Multi-Joint Manipulator Using PD-Sliding Mode)

  • 손현석;이원기;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

물체의 운동패턴을 이용한 로보트 팔의 자기보정 (Self-Calibration of a Robot Manipulator by Using the Moving Pattern of an Object)

  • Young Chul Kay
    • 전자공학회논문지B
    • /
    • 제32B권5호
    • /
    • pp.777-787
    • /
    • 1995
  • This paper presents a new method for automatically calibrating robot link (Kinematic) parameters during the process of estimating motion parameters of a moving object. The motion estimation is performed based on stereo cameras mounted on the end-effector of a robot manipulator. This approach significantly differs from other calibration approaches in that the calibration is achieved by simply observing the motion of the moving object (without resorting to any other external calibrating tools) at numerous and widely varying joint-angle configurations. A differential error model, which expresses the measurement errors of a robot in terms of robot link parameter errors and motion parameters, is developed. And then a measurement equation representing the true measurement values is derived. By estimating the above two kinds of parameters minimizing the difference between the measurement equations and the true moving pattern, the calibration of the robot link parameters and the estimation of the motion parameters are accomplished at the same time.

  • PDF

폐루프 구조를 가지는 6 자유도 머니퓰레이터의 개발 및 기구학적 해석 (Development of 6 DOF Positioning Manipulator Using Closed Loop Structure and Its Kinematic Analysis)

  • 김경찬;우춘규;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.60-68
    • /
    • 1998
  • Parallel link manipulators have an ability of more precise positioning than serial open-loop manipulators. However. general parallel link manipulators have been restricted to the real applications since they have limited workspace due to interference among actuators. In this study, we suggest a closed-loop manipulator with 6 degrees-of-freedom and with enlarged workspace. It consists of two parts for minimizing the interference among actuators. One part is lower structure with planar 3 degrees-of-freedom and the other is upper one with spatial 3 degrees-of-freedom. Forward kinematics and inverse kinematics are solved, research about singularity points are carried out and workspace is evaluated. The comparison of workspace between Stewart platform, which is the typical parallel link manipulator, and the suggested manipulator shows that the workspace of the latter is wider than that of the former. Especially, simulation results also show that the suggested manipulator is more suitable when there needs rotation in the end-effector.

  • PDF

KAIST ARM의 고속동작제어를 위한 하드웨어 좌표변환기의 개발

  • 박서욱;오준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.127-132
    • /
    • 1992
  • To relize the future intelligent robot the development of a special-purpose processor for a coordinate transformation is evidently challenging task. In this case the complexity of a hardware architecture strongly depends on the adopted algorithm. In this paper we have used an inverse kinemetics algorithm based on incremental unit computation method. This method considers the 3-axis articulated robot as the combination of two types of a 2-axis robot: polar robot and 2-axis planar articulated one. For each robot incremental units in the joint and Cartesian spaces are defined. With this approach the calculation of the inverse Jacobian matrix can be realized through a simple combinational logic gate. Futhermore, the incremental computation of the DDA integrator can be used to solve the direct kinematics. We have also designed a hardware architecture to implement the proposed algorithm. The architecture consists of serveral simple unitsl. The operative unit comprises several basic operators and simple data path with a small bit-length. The hardware architecture is realized byusing the EPLD. For the straight-line motion of the KAIST arm we have obtained maximum end effector's speed of 12.6 m/sec by adopting system clock of 8 MHz.

매니퓰레이터의 궤적 제어를 이용한 레이저 부분 절단 시스템의 유연한 자동화에 관한 연구 (A Study on Flexible Automation of a Laser Semicutting System using the Path Control of Manipulator)

  • 김승우;조영완;박민용
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.786-794
    • /
    • 1998
  • This paper proposes an automatic microshaping technology using laser and applies it to implementation of semicutting control system of the panel inside which a car air bag is equipped. Since it is impossible to project laser directly onto the desired working point of a target panel due to fixedness of laser generator, we reflect the generated laser, using reflection mirrors and focusing lenses, to project onto the desired working point. Also, in order to conduct an uniform semicutting control with constant width and depth, we control the end-effector of manipulator, which grasp the laser reflection mirror, to track working path with constant speed and orientation. The validity and effectiveness of the proposed methods are checked through experiments tracking a path formatted with straight lines and arcs.

  • PDF

유압 굴삭기의 궤적 추종을 위한 강인 제어 (Robust Control of Trajectory Tracking for Hydraulic Excavator)

  • 최종환;김승수;양순용;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

한양 로봇손 I의 설계 (Design of the Hanyang robotic hand I)

  • 정낙영;백주현;이수진;이준호;서일홍;최동훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.508-513
    • /
    • 1990
  • 오늘날, 생산성 증대와 품질 향상을 목적으로 산업용 로봇의 사용이 증대되면서 다양한 생산현장에서의 유연성과 적응성이 크게 요구되고 있는 실정이다. 그러나, 현재의 산업용 로봇은 end-effector의 dexterity의 부족으로 그 사용에 제한을 받고 있다. 이를 해결하기 위해 다지(multi-fingered), 다관절(articulated) 로봇손(robotic hands)의 도입이 필요하게 되었는데 이는 전체 로봇시스템의 능력과 유연성을 증가시킬 수 있을 것이다. 현재의 Flexible Manufacturing Workcell은 보통 한 대의 로봇팔과 많은 특수 용도의 고가의 tool로 구성되어 있으나 일반적인 모든 작업에 제한없이 모두 적용하기는 매우 어렵다. 그러므로, 다지, 다관절 로봇손의 개발 및 그 지능 제어의 실현은 작업에 따르는 불필요한 tool의 교환을 방지하여 비용과 시간을 절약함으로써 생산성을 극대화시킬 수 있다. 따라서, 본 연구에서는 Flexible Automation을 위한 다지, 다관절 로봇손의 설계 및 제작에 관한 방법을 제시하고자 한다.

  • PDF

로보트 성능측정 및 Calibration 시스템 (Robot performance test and calibration systme)

  • 김문상;유형석;장현상;허재범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.596-601
    • /
    • 1990
  • When using robot manipulator to carry out autonomous tasks, the positioning accuracy of the robot manipulator relative to a reference coordinate frame is of greate importance. The task program, which is generated by off-line CAD-system and used in actual robot positioning, may cause serious amount of the absolute positioning error of the robot manipulator. In this study, a robot performance test and calibration algorithms are proposed in order to improve the absolute positioning accuracy of the robot end effector. Experiments were also carried out by utilizing the HYUNDAI Robot AE 7601 and KIM2-Tester, a three dimensional measurement system, which is developed in Robotics & Fluid Power Control Lab. at Korea Institute of Science and Technology.

  • PDF

DNP에 의한 자동화 시스템의 강인제어기 설계 (Design of DNP Controller for Robust Control Auto-Systems)

  • 김종옥;조용민;민병조;송용화;조현섭
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1999년도 학술대회논문집-국제 전기방전 및 플라즈마 심포지엄 Proceedings of 1999 KIIEE Annual Conference-International Symposium of Electrical Discharge and Plasma
    • /
    • pp.121-126
    • /
    • 1999
  • In this paper, to bring under robust and accurate control of auto-equipment systems which disturbance, parameter alteration of system, uncertainty and so forth exist, neural network controller called dynamic neural processor(DNP) is designed. In order to perform a elaborate task like as assembly, manufacturing and so forth of components, tracking control on the trajectory of power coming in contact with a target as well as tracking control on the movement course trajectory of end-effector is indispensable. Also, the learning architecture to compute inverse kinematic coordinates transformations in the manipulator of auto-equipment systems is developed and the example that DNP can be used is explained. The architecture and learning algorithm of the proposed dynamic neural network, the DNP, are described and computer simulations are provided to demonstrate the effectiveness of the proposed learning method using the DNP.

  • PDF

Analytical Method for Constrained Mechanical and Structural Systems

  • Eun, Hee-Chang;Park, Sang-Yeol;Lee, Eun-Taik;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1691-1699
    • /
    • 2004
  • The objective of this study is to present an accurate and simple method to describe the motion of constrained mechanical or structural systems. The proposed method is an elimination method to require less effort in computing Moore-Penrose inverse matrix than the generalized inverse method provided by Udwadia and Kalaba. Considering that the results by numerical integration of the derived second-order differential equation to describe constrained motion veer away the constrained trajectories, this study presents a numerical integration scheme to obtain more accurate results. Applications of holonomically or nonholonomically constrained systems illustrate the validity and effectiveness of the proposed method.