• 제목/요약/키워드: end-anchorage

검색결과 90건 처리시간 0.024초

탄소섬유보강판으로 보강된 철근콘크리트 보의 정착길이 특성 (Characteristics of Anchorage Length for Reinforced Concrete Beam Strengthened by CFRP Plate)

  • 한상훈;최만용;조홍동;박중열;황선일;권용길
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.405-410
    • /
    • 2002
  • This paper deals with the flexural behavior of RC hems strengthened with CFRP plate and the estimation on anchorage length of CFRP Plate. Experimental variables included concrete strength, reinforcement ratio, cover thickness of concrete and length ratio of CFRP plate for a pure span. A failure load, failure mode, deflection and strain response at different distances from a cut-off point of CFRP plate were observed and anchorage length was determined through strain distribution of CFRP plate. Herein, anchorage length is defined the length between CFRP plate end and the beginning point of full composite behavior. Also, the anchorage length observed from the experiment was compared with Nguyen's equation and BS specification.

  • PDF

Anchorage Effects of Various Steel Fibre Architectures for Concrete Reinforcement

  • Abdallah, Sadoon;Fan, Mizi;Zhou, Xiangming;Geyt, Simon Le
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.325-335
    • /
    • 2016
  • This paper studies the effects of steel fibre geometry and architecture on the cracking behaviour of steel fibre reinforced concrete (SFRC), with the reinforcements being four types, namely 5DH ($Dramix^{(R)}$ hooked-end), 4DH, 3DH-60 and 3DH-35, of various hooked-end steel fibres at the fibre dosage of 40 and $80kg/m^3$. The test results show that the addition of steel fibres have little effect on the workability and compressive strength of SFRC, but the ultimate tensile loads, post-cracking behaviour, residual strength and the fracture energy of SFRC are closely related to the shapes of fibres which all increased with increasing fibre content. Results also revealed that the residual tensile strength is significantly influenced by the anchorage strength rather than the number of the fibres counted on the fracture surface. The 5DH steel fibre reinforced concretes have behaved in a manner of multiple crackings and more ductile compared to 3DH and 4DH ones, and the end-hooks of 4DH and 5DH fibres partially deformed in steel fibre reinforced self-compacting concrete (SFR-SCC). In practice, 5DH fibres should be used for reinforcing high or ultra-high performance matrixes to fully utilize their high mechanical anchorage.

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

Effectiveness of anchorage with temporary anchorage devices during anterior maxillary tooth retraction: A randomized clinical trial

  • Barthelemi, Stephane;Desoutter, Alban;Souare, Fatoumata;Cuisinier, Frederic
    • 대한치과교정학회지
    • /
    • 제49권5호
    • /
    • pp.279-285
    • /
    • 2019
  • Objective: This study evaluated the efficiency of anchorage provided by temporary anchorage devices (TADs) in maxillary bicuspid extraction cases during retraction of the anterior teeth using a fixed appliance. Methods: Patients aged 12 to 50 years with malocclusion for which bilateral first or second maxillary bicuspid extractions were indicated were included in the study and randomly allocated to the TAD or control groups. Retraction of the anterior teeth was achieved using skeletal anchorage in the TAD group and conventional dental anchorage in the control group. A computed tomography (CT) scan was performed after alignment of teeth, and a second CT scan was performed at the end of extraction space closure in both groups. A three-dimensional superimposition was performed to visualize and quantify the maxillary first molar movement during the retraction phase, which was the primary outcome, and the stability of TAD movement, which served as the secondary outcome. Results: Thirty-four patients (17 in each group) underwent the final analysis. The two groups showed a significant difference in the movement of the first maxillary molars, with less significant anchorage loss in the TAD group than that in the control group. In addition, TAD movement showed only a slight mesial movement on the labial side. On the palatal side, the mesial TAD movement was greater. Conclusions: In comparison with conventional dental anchorage, TADs can be considered an efficient source of anchorage during retraction of maxillary anterior teeth. TADs remain stable when correctly placed in the bone during the anterior tooth retraction phase.

New reinforcement algorithms in discontinuous deformation analysis for rock failure

  • Chen, Yunjuan;Zhu, Weishen;Li, Shucai;Zhang, Xin
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.787-803
    • /
    • 2016
  • DDARF (Discontinuous Deformation Analysis for Rock Failure) is a numerical algorithm for simulating jointed rock masses' discontinuous deformation. While its reinforcement simulation is only limited to end-anchorage bolt, which is assumed to be a linear spring simply. Here, several new reinforcement modes in DDARF are proposed, including lining reinforcement, full-length anchorage bolt and equivalent reinforcement. In the numerical simulation, lining part is assigned higher mechanical strength than surrounding rock masses, it may include multiple virtual joints or not, depending on projects. There must be no embedding or stretching between lining blocks and surrounding blocks. To realize simulation of the full-length anchorage bolt, at every discontinuity passed through the bolt, a set of normal and tangential spring needs to be added along the bolt's axial and tangential direction. Thus, bolt's axial force, shearing force and full-length anchorage effect are all realized synchronously. And, failure criterions of anchorage effect are established for different failure modes. In the meantime, from the perspective of improving surrounding rock masses' overall strength, a new equivalent and tentative simulation method is proposed, it can save calculation storage and improve efficiency. Along the text, simulation algorithms and applications of these new reinforcement modes in DDARF are given.

Nonlinear analysis of RC beams based on simplified moment-curvature relation considering fixed-end rotation

  • Kim, Sun-Pil
    • Computers and Concrete
    • /
    • 제4권6호
    • /
    • pp.457-475
    • /
    • 2007
  • A simple analytical procedure to analyze reinforced concrete (RC) beams with cracked section is proposed on the basis of the simplified moment-curvature relations of RC sections. Unlike previous analytical models which result in overestimation of stiffness and underestimation of structural deformations induced from assuming perfect-bond condition between steel and concrete, the proposed analytical procedure considers fixed-end rotation caused by anchorage. Furthermore, the proposed analytical procedure, compared with previous numerical models, promotes effectiveness of analysis by reflecting several factors which can influence nonlinearity of RC structure into the simplified moment-curvature relation. Finally, correlation studies between analytical and experimental results are conducted to establish the applicability of the proposed analytical procedure to the nonlinear analysis of RC structures.

정박지 규모의 적정성 평가 기준에 의한 울산항 정박지 개선 방안 (Improvement Plan for Ulsan Anchorage Based on Adequacy Evaluation Criteria)

  • 박준모;윤귀호;강민균;이윤석
    • 해양환경안전학회지
    • /
    • 제27권2호
    • /
    • pp.247-255
    • /
    • 2021
  • 울산항 정박지는 정박지 수요 대비 충분한 넓이의 면적이 확보되어 있지 않으나 이를 객관적으로 평가할 수 있는 기준이 명확하게 정의되어 있지 않은 실정이다. 이에 본 연구에서는 현행 정박지 밀집도와 가동률 개념의 문제점을 개선한 일반식과 정박지 적정성 평가를 위한 새로운 평가 기준을 제안하였다. 그리고 이 기준을 울산항 E 정박지에 적용하여 정박지 규모의 적정성을 평가하였다. 울산항 E1 정박지의 밀집도와 가동률은 각각 129 %, 122 %로 두 평가 기법 모두 100 %를 초과하는 것으로 나타나 평가 기준에 따라 정박지 확장이 필요한 것으로 분석되었다. 이에 울산항 입출항 선박의 통항 패턴과 도선지점과의 거리를 고려하여 울산항 제1항로 끝단에서 부채꼴 모양으로 35도를 개방한 정박지 확장 방안을 제시하였고, 해상교통 항적도, 정박지 밀집도, 그리고 가동률 평가 기준을 적용하여 적정성을 검증하였다. 검증 결과 울산항 E3 정박지 남측의 확장 해역과 해상교통 항적이 일부 겹치는 부분은 존재하나 매우 미미하여 해상교통에 영향을 미칠 가능성은 희박한 것으로 분석되었다. 또한 정박지 모두에서 정박지 규모의 적정성이 확보되었음을 확인하였다.

고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도 (Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars)

  • 김영록;이창용;김승훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.111-117
    • /
    • 2019
  • 확대머리 SD600 고강도 인장철근으로 단부 정착된 SFRC 깊은보의 전단성능을 평가하기 위해 전단 실험을 수행하였다. 실험 변수는 주인장 철근의 단부 정착방법(확대머리 철근, 일자형 철근), 단부 정착길이, 전단보강근 유무 등이다. 전단경간비는 1을 가지는 실험체에 대한 전단실험결과, 모든 실험체는 초기 휨 균열이 발생한 후 경사균열이 진행되면서 최종적으로 압축전단파괴되었다. 확대머리 철근으로 기계적 정착된 실험체들이 일자형 철근 정착에 비하여 5.6~22.4% 더 큰 전단강도를 나타내었다. 확대머리 철근으로 기계적 정착된 실험체들에 대하여 최대하중의 75%까지는 지압응력이 전체 정착응력의 0.9~17.2%에 도달하였으나, 최대하중 시점에서 지압응력이 전체 정착응력의 22.4%~46%에 도달하여 큰 응력 부담률을 나타내었다. 이를 통하여 확대머리 지압응력에 의한 정착응력 증가가 전단강도에 큰 영향을 미침을 알 수 있다. 실험 전단강도가 실용식에 의한 전단강도의 2.68~4.65 배로 평가되어, 실용식이 전단내력을 안전측으로 평가하였다.

단일텐던 및 복수텐던이 설치된 프리스트레스트 콘크리트 부재의 정착부 거동 연구 (Mechanical Behavior of Anchorage Zones in Prestressed Concrete Members with Single and Closely-Spaced Anchorages)

  • 오병환;임동환;유승운
    • 대한토목학회논문집
    • /
    • 제14권6호
    • /
    • pp.1329-1339
    • /
    • 1994
  • 본 논문은 복수 정착구가 서로 인접하여 설치되었을 경우의 정착부 거동 및 국부응력 분포특성을 규명함에 목적이 있으며, 이를 위하여 단일텐던 및 복수텐던이 설치된 프리스트레스 콘크리트부재에 대한 실험연구가 수행되었다. 위의 실험연구 결과 정착부 파괴는 단일 및 복수텐던 설치부재 모두 텐던을 따라가는 균열에 의해 시작되며, 먼저 정착된 텐던 정착부 주변의 인장응력은 인접해서 긴장되는 텐던의 압축응력 발생효과로 인하여 균열하중에 대한 저항성이 개선됨이 밝혀졌다. 본 논문에서는 복수텐던 부재의 정착부 주위의 변형도 분포와 균열하중 등을 단일텐던 부재의 경우와 비교분석하여 제시하였으며, 복수텐던부재의 파괴기구도 규명하였다.

  • PDF

Reinforcement design for the anchorage of externally prestressed bridges with "tensile stress region"

  • Liu, C.;Xu, D.;Jung, B.;Morgenthal, G.
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.383-397
    • /
    • 2013
  • Two-dimensional tensile stresses are occurring at the back of the anchorage of the tendons of prestressed concrete bridges. A new method named "tensile stress region" for the design of the reinforcement is presented in this paper. The basic idea of this approach is the division of an anchor block into several slices, which are described by the tensile stress region. The orthogonal reinforcing wire mesh can be designed in each slice to resist the tensile stresses. Additionally the sum of the depth of every slice defined by the tensile stress region is used to control the required length of the longitudinal reinforcement bars. An example for the reinforcement design of an anchorage block of an external prestressed concrete bridge is analyzed by means of the new presented method and a finite element model is established to compare the results. Furthermore the influence of the transverse and vertical prestressing on the ordinary reinforcement design is taken into account. The results show that the amount of reinforcement bars at the anchorage block is influenced by the layout of the transverse and the vertical prestressing tendons. Using the "tensile stress region" method, the ordinary reinforcement bars can be designed more precisely compared to the design codes, and arranged according to the stress state in every slice.