• 제목/요약/키워드: end bearing

검색결과 426건 처리시간 0.027초

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

표층처리공법으로 개량된 초연약지반의 지지력산정방법에 관한 연구 (A Study for Bearing Capacity Calculation Method of Very Soft Ground with Reinforced Surface)

  • 함태규;조삼덕;양기석;유승경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.303-314
    • /
    • 2010
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 49 kinds of the laboratory model tests were conducted. And the result the study suggested $\beta_s$, the stiffness coefficient to evaluate the stiffness effect of reinforcement materials. Then, it was also found that the stiffness coefficient, $\beta_s$ as the testing constant would be appropriate as high as 1.0, 1.1 and 1.5 for geotextile, geogrid and steel bar, respectively. And It was evaluated that the stiffness effect affecting reinforcement improvement effect would be reduced as the thickness of embeded depth increases and that RFe, the stiffness effect reduction coefficient would have positive correlation with H/B. Finally, it was confirmed that the bearing capacity gained from the method to calculate bearing capacity, which was suggested in the study, would almost correctly estimate the capacity, demonstrating the appropriateness of the proposed bearing capacity calculation method.

  • PDF

양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정 (Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests)

  • 정경자;조종석;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF

S.I.G 공법으로 선단보강된 강관말뚝의 지지거동 (The Behavior of Bearing Capacity of Steel Pipe Piles Reinforced by Super Injection Grouting at Pile Tip)

  • 박영호;김낙영;육정훈;최진오
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.20-27
    • /
    • 2004
  • Reinforced twice than width of foundation with SIC under steel piles drived in cohesion soil and in the coal-limestone which heavily fractured. To analyze behaviour characteristic of steel piles, load transfer test was performed to steel piles attached with strain gauges to axial direction. After it passed 49days, dynamic load test was performed to set-up effect of steel piles bearing capacity. The results of test were compared to each other. According to the results, as the skin friction of steel pile was on the same condition, end bearing capacity of steel piles established on SIC solid of cemented milk in cohesion soil was three times than steel piles established on SIG solid of cemented milk in heavily fractured coal- limestone. After piles were driven and passes 49days, in case of piles on SIG solid of comented milk in cohesion soil the increaes of allowable bearing capacity was 442.9% and allowable bearing capacity of piles on SIG solid of cemented milk in heavily fractured coal-limestone increased 22.4%.

  • PDF

플라이휠 에너지 저장장치 회전체계의 동역학적 설계 및 해석 (Rotordynamic Design and Analysis of the Rotor-Bearing System of a 500Wh Flywheel Energy Storage Device)

  • 최상규;김영철;경진호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.283-289
    • /
    • 1997
  • A 500Wh class high-speed Flywheel Energy Storage System (FESS) driven by a built-in BLDC motor/generator has been designed, which runs from 30000 to 60000rpm nominally. Due to the motor/generator inside, the flywheel rotor made of composites supported by PM/EM hybrid bearing system has a shape of bell or pendulum and thus requires accurate rotordynamic analyses and prediction of its dynamic behavior to secure the operating reliability. Rotordaynamic analyses of the flywheel rotor-bearing system revealed that the bell shaped rotor has two conical rigid-body modes in the system operating range and the first conical mode, of which nodal point lies in the radial EM bearing position, can adversely affect the dynamic response of the rotor at the corresponding critical speed. To eliminate the possibility of wild behavior of the rotor, two guide bearings are adopted at the upper end of the rotor and motor/generator. It was also revealed that the EM bearing stiffness of 0.5~1.0E+6 N/m and damping of 2000 Ns/m are favorable for smooth operation of the system around the 2nd critical speed.

  • PDF

기초분리말뚝 공법의 설계기법 개발 (Development of Design Method of Disconnected Piled Raft Foundation System)

  • 최정인;민기훈;김성호;권오성;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

베트남 연약지반에서의 현장타설말뚝 설계 사례 (A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam)

  • 서원석;조성한;최기병
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF

파이어링 시동 사이클 초기에서의 엔진 베어링 마모 시뮬레이션 (Wear Simulation of Engine Bearings in the Beginning of Firing Start-up cycle)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제35권4호
    • /
    • pp.244-266
    • /
    • 2019
  • The purpose of this study is to estimate the wear volumes of engine journal bearings operating at variable angular velocity of a shaft in the beginning of firing start-up cycle. To do this, first we find the potential region of wear scar on engine journal bearings where the applied bearing load and crank shaft velocity are variable. The potential wear regions are discovered by finding minimum oil film thickness at every crank angle existing below most oil film thickness scaring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Then we calculate the wear volume from the wear depth and two wear angles decided by the magnitude of each film thickness lower than MOFTSW at every crank angle. The results show that the expected wear region is located at a few bearing angles after and/or behind the upper center of a big-end bearing and the lower center of a main bearing. And the real wear region is similar to the estimated wear region. Further we find that the wear scar on an engine journal bearing may occur at re-starting time after switch-off of a start motor especially under the condition of high oil temperature.

일반 구조용 강재 적용 정정 및 부정정 보부재의 고온 시 해석적 내력 평가 연구 (Analytical Structural Stability Evaluation for H-section Beams Made of Ordinary Structural Steels Based on Boundary Conditions at High Temperatures)

  • 권인규
    • 한국화재소방학회논문지
    • /
    • 제29권4호
    • /
    • pp.33-38
    • /
    • 2015
  • 강구조 건축물의 바닥하중은 보부재를 통하여 기둥부재로 전달되며, 보부재는 양단 고정단 또는 단순보 조건으로 구성된다. 양단 고정단 강재보와 한단 힌지 그리고 타단 회전단의 단순보는 경계조건의 차이에 따라 전달되는 최대하중과 처짐 등 구조적 내력성능이 상이하나, 화재 시 내화성능 평가는 단순보의 경계조건으로 평가되고 있다. 따라서 본 논문에서는 강재보의 경계조건에 따른 내력적 성능의 차이를 확인하기 위하여 일반 구조용 강재(SS 400)의 고온특성을 적용한 열전달해석 및 열응력해석을 수행하였으며, 그 결과 동일한 보부재의 길이와 단면 조건하에서 부정정 구조물인 고정단 경계조건이 정정 단순보 경계조건에 비해서 내력과 처짐이 건전한 것으로 나타났다. 따라서 강재 보의 내화시험 시 단순보로 시험하는 것이 안전측으로 판단되었다.

모터링 시동 및 시동정지 사이클에서 경사진 축을 갖는 저어널 베어링의 마모 해석 - Part I: 마모발생 가능영역에서의 유막 변화 연구 (Wear Analysis of Journal Bearings in a Misaligned Shaft During Motoring Start-up and Coast-down Cycles - Part I: Study on the Change in Oil Film Thickness at Potential Wear Regions)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제33권4호
    • /
    • pp.153-167
    • /
    • 2017
  • The aim of this study is to find the change in trend in the eccentricities of two journal bearings supporting the crankshaft of a single cylinder engine and the degree of misalignment of the shaft. We analyze the change in oil film thickness considering the wear scar under mixed-elasto-hydrodynamic lubrication regime at potential wear regions. For this, we first calculate the central eccentricities of the two journal bearings by using the mobility method. Then we calculate the outer end eccentricity by using the geometry of the bearings. Further, the tilting angle and degree of misalignment of the shaft are calculated by using the eccentricities of the two bearings. We show that the eccentricity of bearing #1, on which higher load is applied, increases at the beginning of the start-up cycle and during the coast-down cycle. However, the eccentricity of bearing #2, on which lower load is applied, decreases at the beginning of the start-up cycle and increases during the coast-down cycle. From the results of the analysis of oil film thickness, we show that the mixed-elasto-hydrodynamic lubrication regime for a misaligned shaft is at the initial stages of the start-up cycle for both bearing #1 and #2 and at the final stage of the coast-down cycle for only bearing #1.