• Title/Summary/Keyword: end anchorage beam

Search Result 34, Processing Time 0.025 seconds

Reinforcement design for the anchorage of externally prestressed bridges with "tensile stress region"

  • Liu, C.;Xu, D.;Jung, B.;Morgenthal, G.
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.383-397
    • /
    • 2013
  • Two-dimensional tensile stresses are occurring at the back of the anchorage of the tendons of prestressed concrete bridges. A new method named "tensile stress region" for the design of the reinforcement is presented in this paper. The basic idea of this approach is the division of an anchor block into several slices, which are described by the tensile stress region. The orthogonal reinforcing wire mesh can be designed in each slice to resist the tensile stresses. Additionally the sum of the depth of every slice defined by the tensile stress region is used to control the required length of the longitudinal reinforcement bars. An example for the reinforcement design of an anchorage block of an external prestressed concrete bridge is analyzed by means of the new presented method and a finite element model is established to compare the results. Furthermore the influence of the transverse and vertical prestressing on the ordinary reinforcement design is taken into account. The results show that the amount of reinforcement bars at the anchorage block is influenced by the layout of the transverse and the vertical prestressing tendons. Using the "tensile stress region" method, the ordinary reinforcement bars can be designed more precisely compared to the design codes, and arranged according to the stress state in every slice.

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • 신성우;반병렬;안종문;조인철;김영수;조삼재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.579-584
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows. The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFA is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

Effect of Strengthening amount and length of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 보강량 및 정착길이가 RC보의 휨거동에 미치는 영향)

  • Shin, Sung Woo;Bahn, Byong Youl;Ahn, Jong Mun;Cho, In Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.195-201
    • /
    • 1998
  • The purpose of this study is to evaluate the flexural strengthening effects of RC beams reinforced with carbon fiber sheets (CFS) in variable of strengthening amount and anchorage length of CFS. This study can be summarized as follows ; The CFS shares the tensile stress such as rebar during loading test. Also, as the strengthening amount of CFS is increased, the maximum flexural strength of RC beams reinforced with CFS is increased. Therefore, it is confirmed that the CFS's strengthening method is very effective to improve the flexural strength of RC beams. The maximum flexural strength of RC beams with CFS is determined by bond failure between CFS and concrete surface. So, the evaluation of CFS's strengthening effect can be calculated using the tensile stress of CFS which is peeling. When the anchorage length of CFS is increased, the ductility of RC beams is increased because of delaying the peeling of CFS. But, in case of same anchorage length of CFS, when the strengthening amount of CFS is increased, the ductility is decreased. Therefore, it is considered that the anchorage of CFS in the end zone is necessary.

  • PDF

An Experimental Study to Prevent the Delamination of the CFS with End-Anchorages (탄소섬유 보강부재의 단부탈락 방지 방안에 관한 실험적 연구)

  • 김두벽;이우철;정진환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.991-996
    • /
    • 2001
  • The strengthening of concrete structures in situ with externally bonded fiber sheets is increasingly being used for repair and rehabilitation of existing structures. Because fiber sheets is attractive for this application due to its good tensile strength, resistance to corrosion, and low weight. But, debonding failure may occur at the beam ends that fiber sheet bonded to the soffit of a beam. The method which can prevent debonding failure is suggested and proved its efficiency by using CPS experimental test. And this paper summarized the results of experimental studies concerning the end-anchorage system. Results show that the suggested method is faithful in strengthening with CFS.

  • PDF

Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete beams: Experimental investigation

  • Kim, Sang Hun;Aboutaha, Riyad S.
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.333-353
    • /
    • 2004
  • Strength of reinforced concrete beams can easily be increased by the use of externally bonded CFRP composites. However, the mode of failure of CFRP strengthened beam is usually brittle due to tension-shear failure in the concrete substrate or bond failure near the CFRP-Concrete interface. In order to improve the ductility of CFRP strengthened concrete beams, critical variables need to be investigated. This experimental and analytical research focused on a series of reinforced concrete beams strengthened with CFRP composites to enhance the flexural capacity and ductility. The main variables were the amount of CFRP composites, the amount of longitudinal and shear reinforcement, and the effect of CFRP end diagonal anchorage system. Sixteen full-scale beams were investigated. A new design guideline was proposed according to the effects of the above-mentioned variables. The experimental and analytical results were found to be in good agreement.

Flexural Strength of RC Beam Strengthened by Partially De-bonded Near Surface-Mounted FRP Strip

  • Seo, Soo-yeon;Choi, Ki-bong;Kwon, Young-sun;Lee, Kang-seok
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.149-161
    • /
    • 2016
  • This paper presents an experimental work to study the flexural strength of reinforced concrete (RC) beams strengthened by partially de-bonded near surface-mounted (NSM) fiber reinforced polymer (FRP) strip with various de-bonded length. Especially, considering high anchorage capacity at end of a FRP strip, the effect of de-bonded region at a central part was investigated. In order to check the improvement of strength or deformation capacity when the bonded surface area only increased without changing the FRP area, single and triple lines of FRP were planned. In addition, the flexural strength of the RC member strengthened by a partially de-bonded NSM FRP strip was evaluated by using the existing researchers' strength equation to predict the flexural strength after retrofit. From the study, it was found that where de-bonded region exists in the central part of a flexural member, the deformation capacity of the member is expected to be improved, because FRP strain is not to be concentrated on the center but to be extended uniformly in the de-bonded region. Where NSM FRP strips are distributed in triple lines, a relatively high strength can be exerted due to the increase of bond strength in the anchorage.

The Design of long cantilever beam using post-tensioned tendons in Kumjung Stadium (포스트텐션을 이용한 장스팬 켄틸레버보의 설계)

  • 최동섭;김동환;김종수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.619-624
    • /
    • 2002
  • A prestressed/precast concrete system was used to build the new Asian Olympic Stadium Project in Pusan, Korea. The stadium(mainly intended for cycle racing) is designed for the 2002 Asian Olympic Games and has a seating capacity of 20,000 spectators plus a few private suites. More than 1300 prestressed/precast components were used and they include single columns, primary beams, cantilever beams, double riser stands, and double tees. Especially, a total of 24 cantilever beams is used on the fourth story for the stands and double tees. These 8m long beams are post-tensioned to prevent cracking, to increase their durability and to serve serviceability by vibration. A cantilever section with cast-in-place topping is 800mm wide and 1500mm deep. Cantilever beams are connected to the column with the corbel by cast-in place concrete. Bonded post-tensioning tendons were assembled at the job site. Dead-end anchorages were installed in the end of cantilever beams and live-end anchorage is the opposite of them. This article presents the geometric layouts, design features and so on.

  • PDF

A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets

  • Kar, Swapnasarit;Biswal, K.C.
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.397-409
    • /
    • 2020
  • The current study targets to estimate the contribution of the end-anchored FRP composites in resisting shear force using a soft computing tool i.e., adaptive neuro-fuzzy inference system (ANFIS). A total of 107 sets of data accumulated from literature was utilized for the development and evaluation of the current ANFIS model. A comparative analysis between the ANFIS predictions and the acquired experimental results has shown that the ANFIS predictions are in very good agreement with that of experimental ones. Additionally, the accuracy of the current ANFIS model has been weighed up against the estimates of nine widely adopted design guidelines. Based on various statistical parameters, it has been deduced that the effectiveness of the current ANFIS model is better than the considered design guidelines. Besides this, a parametric study was carried out to explore the combined effect of different parameters as well as the impact of individual parameters.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Behavior Characteristics of Reinforced Concrete Beam Strengthened with Carbon Fiber Reinforced Polymer Plate (CFRP로 보강된 철근콘크리트 보의 거동 특성)

  • Park, Jung-Yeol;Hwang, Seon-Il;Cho, Hong-Dong;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • This paper presents the characteristics of flexural behavior of RC beam strengthened with CFRP(Carbon Fiber Reinforced Polymer Plate). Experimental variables included the strengthening length, width, reinforcement ratio, end anchorage and preloading corresponding to 75 percent of ultimate capacity and the effects according to each experimental variables were analyzed. To study, a total 21 RC beams were constructed, tested and the response of the beams in terms of ultimate load, deflection, strain of CFRP, failure mode were examined.