• Title/Summary/Keyword: encryption key

Search Result 987, Processing Time 0.032 seconds

A Practical Public Key Broadcast Encryption Scheme for Multiple Channels (다중채널을 위한 실용적인 공개키 Broadcast Encryption Scheme)

  • 정지현;김종희;황용호;이필중
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.07a
    • /
    • pp.11-16
    • /
    • 2003
  • 본 논문에서는 새로운 공개키 다중채널 broadcast encryption scheme(이하 PK-MCBE라 부른다)을 제안한다. 일반적인 broadcast encryption은 하나의 채널스트림을 전송하는 반면 PK-MCBE는 다수채널의 컨텐츠 스트림을 전송한다. 본 논문에서 제안하는 방식에서 수신자는 단지 하나의 비밀키만을 필요로 하며 한번 받은 비밀키는 변경되지 않는다. 제안하는 방식에서는 각 채널당 송신자가 전송하는 메세지의 공통부분을 한번만 전송하여 전체 전송 메세지의 길이를 줄일 수 있다. 또한 배신자(traitors)를 추적하여 효과적으로 강제 탈퇴시킬 수 있다.

  • PDF

Optical Encryption based on Visual Cryptography and Interferometry (시각 암호와 간섭계를 이용한 광 암호화)

  • 이상수;서동환;김종윤;박세준;신창목;김수중;박상국
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.126-127
    • /
    • 2000
  • In this paper, we proposed an optical encryption method based in the concept of visual cryptography and interferometry. In our method a secret binary image was divided into two sub-images and they were encrypted by 'XOR' operation with a random key mask. Finally each encrypted image was changed into phase mask. By interference of these two phase masks the original image was obtained. Compared with general visual encryption method, this optical method had good signal-to-noise ratio due to no need to generate sub-pixels like visual encryption.

  • PDF

Optical Image Encryption Based on Characteristics of Square Law Detector (세기검출기를 이용한 광 영상 암호화)

  • Lee, Eung-Dae;Park, Se-Jun;Lee, Ha-Un;Kim, Su-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.3
    • /
    • pp.34-40
    • /
    • 2002
  • In this paper, a new encryption method for a binary image using Phase modulation and Fourier transform is proposed. For decryption we use the characteristics of square law detector. In encryption process, a key image is obtained by phase modulation of 256 level random pattern and its Fourier transformation, and input image is encrypted by Fourier transforming the multiplication of the phase modulated random pattern and phase modulated input image. The encrypted image and key image have only phase information, so they can not be copied or counterfeited and the original image can not be decrypted without the key image. To reconstruct the original image, each phase mask of the key image and the encrypted image must be placed on each path of the Mach-Zehnder interferometry with Fourier transform lens and the output image is obtained in the form of intensity in the CCD(Charge Coupled Device) camera. The real-time decryption is possible in the proposed system by use of a LCD as a phase modulator and a CCD camera as an intensity detector. The proposed method shows a good performance in the computer simulation and optical experiment as an encryption scheme.

Comparison on Recent Metastability and Ring-Oscillator TRNGs (최신 준안정성 및 발진기 기반 진 난수 발생기 비교)

  • Shin, Hwasoo;Yoo, Hoyoung
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.543-549
    • /
    • 2020
  • As the importance of security increases in various fields, research on a random number generator (RNG) used for generating an encryption key, has been actively conducted. A high-quality RNG is essential to generate a high-performance encryption key, but the initial pseudo-random number generator (PRNG) has the possibility of predicting the encryption key from the outside even though a large amount of hardware resources are required to generate a sufficiently high-performance random number. Therefore, the demand of high-quality true random number generator (TRNG) generating random number through various noises is increasing. This paper examines and compares the representative TRNG methods based on metastable-based and ring-oscillator-based TRNGs. We compare the methods how the random sources are generated in each TRNG and evaluate its performances using NIST SP 800-22 tests.

An Implementation of Authentication and Encryption of Multimedia Conference using H.235 Protocol (H.235 프로토콜에 의한 영상회의의 인증과 암호화 구현)

  • Sim, Gyu-Bok;Lee, Keon-Bae;Seong, Dong-Su
    • The KIPS Transactions:PartC
    • /
    • v.9C no.3
    • /
    • pp.343-350
    • /
    • 2002
  • This paper describes the implementation of H.235 protocol for authentication and media stream encryption of multimedia conference systems. H.235 protocol is recommended by ITU-T for H.323 multimedia conference security protocol to prevent from being eavesdropped and modified by an illegal attacker. The implementation in this paper has used password-based with symmetric encryption authentication. Media streams are encrypted using the Diffie-Hellman key exchange algorithm and symmetric encryption algorithms such as RC2, DES and Triple-DES. Also, 128-bit Advanced Encryption Standard and 128-bit Korean standard SEED algorithms are implemented for the future extension. The implemented authentication and media stream encryption has shown that it is possible to identify terminal users without exposing personal information on networks and to preserve security of multimedia conference. Also, encryption delay time and used memory are not increased even though supporting media stream encryption/decryption, thus the performance of multimedia conference system has not deteriorated.

A high reliable optical image encryption system which combined discrete chaos function with permutation algorithm (이산 카오스 함수와 Permutation Algorithm을 결합한 고신뢰도 광영상 암호시스템)

  • 박종호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.37-48
    • /
    • 1999
  • Current encryption methods have been applied to secure communication using discrete chaotic system whose output is a noise-like signal which differs from the conventional encryption methods that employ algebra and number theory[1-2] We propose an optical encryption method that transforms the primary pattern into the image pattern of discrete chaotic function first a primary pattern is encoded using permutation algorithm, In the proposed system we suggest the permutation algorithm using the output of key steam generator and its security level is analyzed. In this paper we worked out problem of the application about few discrete chaos function through a permutation algorithm and enhanced the security level. Experimental results with image signal demonstrate the proper of the implemented optical encryption system.

A Study on the Security Framework in IoT Services for Unmanned Aerial Vehicle Networks (군집 드론망을 통한 IoT 서비스를 위한 보안 프레임워크 연구)

  • Shin, Minjeong;Kim, Sungun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.897-908
    • /
    • 2018
  • In this paper, we propose a security framework for a cluster drones network using the MAVLink (Micro Air Vehicle Link) application protocol based on FANET (Flying Ad-hoc Network), which is composed of ad-hoc networks with multiple drones for IoT services such as remote sensing or disaster monitoring. Here, the drones belonging to the cluster construct a FANET network acting as WTRP (Wireless Token Ring Protocol) MAC protocol. Under this network environment, we propose an efficient algorithm applying the Lightweight Encryption Algorithm (LEA) to the CTR (Counter) operation mode of WPA2 (WiFi Protected Access 2) to encrypt the transmitted data through the MAVLink application. And we study how to apply LEA based on CBC (Cipher Block Chaining) operation mode used in WPA2 for message security tag generation. In addition, a modified Diffie-Hellman key exchange method is approached to generate a new key used for encryption and security tag generation. The proposed method and similar methods are compared and analyzed in terms of efficiency.

Many-to-One Encryption and Authentication Scheme and Its Application

  • Lin, Xi-Jun;Wu, Chuan-Kun;Liu, Feng
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.18-27
    • /
    • 2008
  • This paper is to study a subclass of group-oriented cryptographic scheme: Many-to-one encryption and authentication scheme. The many-to-one encryption and authentication scheme is to solve a practical problem, i.e., the scenario that the number of the receivers is very small compared with the number of the senders and a receiver may serve millions of senders. Compared with the traditional methods, the burdens of the receiver and the KGC are reduced greatly. How to revoke a sender from his receiver's legitimate sender group is also proposed and it is efficient compared with some traditional methods. The proposed scheme is proven in the random oracle models. The computational complexity of our scheme is independent of the number of the senders. At the end of the paper, an example is given to show how to use our scheme in online software registration and update.

Hardware Design with Efficient Pipelining for High-throughput AES (높은 처리량을 가지는 AES를 위한 효율적인 파이프라인을 적용한 하드웨어 설계)

  • Antwi, Alexander O.A;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.578-580
    • /
    • 2017
  • IoT technology poses a lot of security threats. Various algorithms are thus employed in ensuring security of transactions between IoT devices. Advanced Encryption Standard (AES) has gained huge popularity among many other symmetric key algorithms due to its robustness till date. This paper presents a hardware based implementation of the AES algorithm. We present a four-stage pipelined architecture of the encryption and key generation. This method allowed a total plain text size of 512 bits to be encrypted in 46 cycles. The proposed hardware design achieved a maximum frequency of 1.18GHz yielding a throughput of 13Gbps and 800MHz yielding a throughput of 8.9Gbps on the 65nm and 180nm processes respectively.

  • PDF

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.