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ABSTRACT

IoT technology poses a lot of security threats. Various algorithms are thus employed in
ensuring security of transactions between IoT devices. Advanced Encryption Standard (AES) has
gained huge popularity among many other symmetric key algorithms due to its robustness till
date. This paper presents a hardware based implementation of the AES algorithm. We present a
four-stage pipelined architecture of the encryption and key generation. This method allowed a
total plain text size of 512 bits to be encrypted in 46 cycles. The proposed hardware design
achieved a maximum frequency of 1.18GHz yielding a throughput of 13Gbps and 800MHz
yielding a throughput of 8.9Gbps on the 656nm and 180nm processes respectively.
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| . INTRODUCTION

Security has become of utmost importance in
our everyday transactions. In order to prevent
an attacker from hijacking city traffic lights,
cars or even water and gas supply, IoT devices
that control them must be securely encrypted.
AES is one such powerful algorithm for
ensuring secured transactions between devices.
It is one of the most secure symmetric block

cipher algorithms in use currently.

IoT devices are embedded devices with
limited resources and low power usage. As
such, we need an AES implementation that can
utilize this small area while increasing speed
without increasing power and resource usage.

Previous works have focused on increasing
throughput and reducing area, The techniques
include; fully pipelined architecture,
ASIP-based  crypto-

used
implementation on an
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processor as well as a one-time key expansion
[1-6]. In this paper, we present a high
throughput low area implementation of the
AES algorithm. We present a four-stage
pipeline architecture of the encryption and key
generation which causes a reduction in the
critical path, hence achieving a high frequency.

Section II describes the traditional AES
algorithm. Section III describes our optimized
implementation. Section IV compares our results
with other papers. Section V is a conclusion of
our results.

[1. The AES Algorithm

Fig. 1 shows the AES encryption structure.
AES algorithm has four main operations which
it performs on a plain text (encryption) or
cipher text (decryption). In order to encrypt or
decrypt we need a key. The size of the plain
text or key can be 128, 192 or 256 bits and the
output is correspondingly 128, 192 or 256 bits.
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Fig. 1. AES encryption structure

The 128 plain text is sub divided into 16
bytes. This plain text as well as all the
intermediate results and the final output are
called states. In order to easily imagine an AES
operation, we need to visualize the state as a
4x4 matrix that is filled column-wise from the
first to the last column of the matrix. AES
performs four operations in a total of 10
iterative rounds for each block size of 128.
Each stage in AES depends on the previous
stage and cannot proceed until the previous
stage is done[3]. The four basic operations are
explained below. Sub-byte is a non-linear byte
substitution that operates independently on
each byte of the State using a substitution table
(S-box). The shift rows operation performs a
left cyclic shift on the state matrix depending
on the row in question. Mix column operates
on the columns. Each 4-byte column is
considered as a vector and multiplied with a

fixed (4 x 4) matrix. The operations in mix
column are done in GF(2% field. Mix Column
operation is not performed for the last round
of AES. AddRoundKey operation is a bitwise
XOR of the current state matrix with the round
key. At the initial stage, we add the plain text
to the original key.

Ill. Proposed AES hardware architecture

In this paper, we present a round pipelined
architecture of the AES algorithm: Instead of
using ten modules of each sub-round for our
encryption process, we iterate over these
modules for the total ten rounds using pipelining.
This efficiently reduces the critical path of the
design and explains our high throughput and
frequencies. The mix column step takes a
column of the state matrix and multiplies with
a fixed matrix. Each column is multiplied by a
either 0x02, 0x03 or O0x01l. As a result, we
decided to group these operations as shown in
Fig. 2.

Common Unit
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Fig. 2. MixColumn Common Unit

From this idea, we made a common unit to
perform these operations on each byte, Ai. We
then route the outputs of each common unit, (1
for each byte) as shown in Fig. 3, to give Bi.
We find that this method of implementing
mixed column helps us reduce the size of the
design.

Al A2 A3 Ad
Common Common Commen Common
Unit Unit Unit Unit

ATT[AT2IA13 |A21/A22|A23 [A31]A32 |A33 |Ad1 A42 |Ad3
- . . - !_ L] - L] L - . L]

[Iioﬁ .-]-[;.xon ] [ xor ]( a.:oﬁl]
(o]

Fig. 3. Proposed MixColumn

Fig. 4 shows proposed hardware architecture.
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The init_ ARK module adds the plain text to
the original key. The S_BOX_16 module consists
of 16 instances of the S-Box look up table.
Shift Row module cyclically shifts the rows of
the state matrix to the left based on the row in
question. Mix_Column module operates on the
columns of the state matrix for nine rounds
and skips on the tenth round. The ARK
module adds a round key to the Mix_Column
result for nine rounds and to the Shift Row
result in the tenth round. The Key_Gen module
generates a key for each round to be added to
the plain text or the round cipher result.

Top_AES Rourd = 10
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Fig. 4. Proposed hardware architecture

IV. Results and comparison

Our proposed design was implemented by
Verilog HDL, synthesized with Synopsis Design
Compiler and simulated with Model Sim. By
using a four-stage pipeline structure, we were
able to achieve an output block size of 512
bits. The use of a BRAM for the S-box as well
as pipelining at the inner round ensured that
the critical path was reduced. In Table 1, we
do a comparison with the other works, [1-3]
for the 65nm and 180nm processes. It can be
seen that We present two technologies for the
sake of comparison with other implementations.

Table 1. Comparison of results

Ref.  Freq. Gates Throughput Cycles Technology
(MHz) (k) (Gbps)

[1] 125 58.4 1.6 10 180nm

[2] 1000 135 11.6 11 65nm

[3] 300 N/A 3.84 - 180nm
Oursl 1180 29.4 13 46 65nm
Ours2 800 27.1 8.96 46 180nm

V.. Conclusion
In this paper, proposed hardware design

with efficient pipelining for high-throughput
AES. The proposed hardware architecture uses
a four-stage pipeline for both encryption and

key generation. This enables us to encrypt four
128 bit plain texts at once. This was achieved
in 46 cycles. We used a common unit for the
Mix_Column module which caused a reduction

in area. The proposed hardware was
synthesized on two processes. The 180nm
process yielded a frequency of 800MHz and a
throughput of 8.9Gbps. The 65nm process
yielded a frequency of 118GHz and a
throughput of 13Gbps.
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