• 제목/요약/키워드: encoding complexity

검색결과 329건 처리시간 0.033초

Fast Intra-Prediction Mode Decision Algorithm for H.264/AVC using Non-parametric Thresholds and Simplified Directional Masks

  • Kim, Young-Ju
    • Journal of information and communication convergence engineering
    • /
    • 제7권4호
    • /
    • pp.501-506
    • /
    • 2009
  • In the H.264/ AVC video coding standard, the intra-prediction coding with various block sizes offers a considerably high improvement in coding efficiency compared to previous standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intraprediction mode for a macroblock, and it brings about the drastic increase of the computation complexity of H.264 encoder. To reduce the computation complexity and stabilize the coding performance on visual quality, this paper proposed a fast intra-prediction mode decision algorithm using non-parametric thresholds and simplified directional masks. The use of nonparametric thresholds makes the intra-coding performance not be dependent on types of video sequences and simplified directional masks reduces the compuation loads needed by the calculation of local edge information. Experiment results show that the proposed algorithm is able to reduce more than 55% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.

모바일 환경에서 HEVC 인트라 인코딩의 계산 복잡도 감소를 위한 영상 특성 기반의 블록 후보 조기 결정 방법 (Texture-based Early Decision of Block Sizes for the Complexity Reduction of HEVC Intra-Encoding in the Mobile Environment)

  • 박승원;이채은
    • 대한임베디드공학회논문지
    • /
    • 제11권4호
    • /
    • pp.235-241
    • /
    • 2016
  • Compared to the former H.264 standard, the number of the prediction modes has highly increased in HEVC intra prediction. Compression efficiency and accurate prediction are significantly improved. However, the computational complexity increases as well. To solve this problem, this paper proposes the new scheme where not only prediction modes but also block partition candidate are early chosen. Compared to the original intra prediction in HEVC, the proposed scheme achieves about 38% reduction in processing cycles with a marginal loss in compression efficiency.

Improvement of image processing speed of the 2D Fast Complex Hadamard Transform

  • Fujita, Yasuhito;Tanaka, Ken-Ichi
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.498-503
    • /
    • 2009
  • As for Hadamard Transform, because the calculation time of this transform is slower than Discrete Cosine Transform (DCT) and Fast Fourier Transform (FFT), the effectiveness and the practicality are insufficient. Then, the computational complexity can be decreased by using the butterfly operation as well as FFT. We composed calculation time of FFT with that of Fast Complex Hadamard Transform by constructing the algorithm of Fast Complex Hadamard Transform. They are indirect conversions using program of complex number calculation, and immediate calculations. We compared calculation time of them with that of FFT. As a result, the reducing the calculation time of the Complex Hadamard Transform is achieved. As for the computational complexity and calculation time, the result that quadrinomial Fast Complex Hadamard Transform that don't use program of complex number calculation decrease more than FFT was obtained.

  • PDF

영상 부호화를 위한 벡터 양자화기에서의 고속 탐색 기법 (Fast Codebook Search for Vector Quantization in Image Coding)

  • 고종석;김재균
    • 한국통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.302-308
    • /
    • 1988
  • 본 논문에서는 벡터 양자화(VQ)의 탐색 복잡도를 줄이기 위한 방법을 제안한다. 본 방법의 현재 부호화하려는 벡터의 특성을 효율적으로 이용함으로써 고속 탐색 효과를 가져온다. 벡터 크기가 16인 제안하는 VQ방식으로써 약 0.1-1.9dB의 미소한 성능 감소로 1/8-1/16의 복잡도 감소를 꾀할 수 있음을 보인다. 동시에 기존의 방식과 비교하여 더 성능이 우수함을 보인다.

  • PDF

H.264에서의 다중 참조 영상 간 모드 생략 기법 (Mode Skip Method of Multiple Reference Frames in H.264)

  • 권재현;강민정;류철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.285-286
    • /
    • 2006
  • H.264 provide good coding efficiency compared with existing video coding standards as H.263, MPEG-4, etc. However, H.264 require the increase of encoder complexity. In this paper, fast mode decision algorithm by skipping variable block size motion estimation and spatial-predictive coding, which occupies most encoder complexity, is proposed. Experimental results show that the proposed approach can save encoding time to 55% compared with the H.264 standard.

  • PDF

Parameter estimation of weak space-based ADS-B signals using genetic algorithm

  • Tao, Feng;Jun, Liang
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.324-331
    • /
    • 2021
  • Space-based automatic dependent surveillance-broadcast (ADS-B) is an important emerging augmentation of existing ground-based ADS-B systems. In this paper, the problem of space-based ultra-long-range reception processing of ADS-B signals is described. We first introduce a header detection method for accurately determining the pulse position of a weak ADS-B signal. We designed a signal encoding method, shaping method, and fitness function. We then employed a genetic algorithm to perform high-precision frequency and phase estimations of the detected weak signal. The advantage of this algorithm is that it can simultaneously estimate the frequency and phase, meaning a direct coherent demodulation can be implemented. To address the computational complexity of the genetic algorithm, we improved the ratio algorithm for frequency estimation and raised the accuracy beyond that of the original ratio algorithm with only a slight increase in the computational complexity using relatively few sampling points.

A Fast Rough Mode Decision Algorithm for HEVC

  • Yao, Wei-Xin;Yang, Dan;Lu, Gui-Fu;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.492-499
    • /
    • 2019
  • HEVC is the high efficiency video coding standard, which provides better coding efficiency contrasted with the other video coding standard. But at the same time the computational complexity increases drastically. Thirty-five kinds of intra-prediction modes are defined in HEVC, while 9 kinds of intra prediction modes are defined in H.264/AVC. This paper proposes a fast rough mode decision (RMD) algorithm which adopts the smoothness of the up-reference pixels and the left-reference pixels to decrease the computational complexity. The three step search method is implemented in RMD process. The experimental results compared with HM13.0 indicate that the proposed algorithm can save 39.7% of the encoding time, while Bjontegaard delta bitrate (BDBR) is increased slightly by 1.35% and Bjontegaard delta peak signal-to-noise ratio (BDPSNR) loss is negligible.

Relative SATD-based Minimum Risk Bayesian Framework for Fast Intra Decision of HEVC

  • Gwon, Daehyeok;Choi, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.385-405
    • /
    • 2019
  • High Efficiency Video Coding (HEVC) enables significantly improved compression performance relative to existing standards. However, the advance also requires high computational complexity. To accelerate the intra prediction mode decision, a minimum risk Bayesian classification framework is introduced. The classifier selects a small number of candidate modes to be evaluated by a rate-distortion optimization process using the sum of absolute Hadamard transformed difference (SATD). Moreover, the proposed method provides a loss factor that is a good trade-off model between computational complexity and coding efficiency. Experimental results show that the proposed method achieves a 31.54% average reduction in the encoding run time with a negligible coding loss of 0.93% BD-rate relative to HEVC test model 16.6 for the Intra_Main common test condition.

High-Speed Transformer for Panoptic Segmentation

  • Baek, Jong-Hyeon;Kim, Dae-Hyun;Lee, Hee-Kyung;Choo, Hyon-Gon;Koh, Yeong Jun
    • 방송공학회논문지
    • /
    • 제27권7호
    • /
    • pp.1011-1020
    • /
    • 2022
  • Recent high-performance panoptic segmentation models are based on transformer architectures. However, transformer-based panoptic segmentation methods are basically slower than convolution-based methods, since the attention mechanism in the transformer requires quadratic complexity w.r.t. image resolution. Also, sine and cosine computation for positional embedding in the transformer also yields a bottleneck for computation time. To address these problems, we adopt three modules to speed up the inference runtime of the transformer-based panoptic segmentation. First, we perform channel-level reduction using depth-wise separable convolution for inputs of the transformer decoder. Second, we replace sine and cosine-based positional encoding with convolution operations, called conv-embedding. We also apply a separable self-attention to the transformer encoder to lower quadratic complexity to linear one for numbers of image pixels. As result, the proposed model achieves 44% faster frame per second than baseline on ADE20K panoptic validation dataset, when we use all three modules.

Noncoherent Decorrelating Multiuser Detector over a Frequency-Selective Rayleigh Fading Channel

  • Lee, Sang-Yun;Lee, Jae-Hong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.397-400
    • /
    • 2002
  • In this paper, a novel noncoherent multiuser detector with diversity reception for a differentially encoded DS/CDMA signal in a frequency-selective Rayleigh fading channel is proposed. The proposed receiver employs multipath decorrelator and decision feedback differential detector (DFDD) with diversity reception. DFDD performs differential encoding and diversity combining. The performance is obtained by analysis and simulation and it is sown that the proposed receiver outperforms conventional differential receiver with slight increase of complexity.

  • PDF