• Title/Summary/Keyword: encoder resolution

Search Result 168, Processing Time 0.027 seconds

Sensorless Speed Control of IPMSM Using an Extended Kalman Filter and Nonlinear and Adaptive Back-Stepping Control Technique (비선형 적응 백스텝핑 제어 기법과 EKF를 적용한 IPMSM의 센서리스 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1413-1422
    • /
    • 2012
  • Adaptive back stepping control technique may provide robust control characteristics under parameter perturbation caused by changing external condition. In order to synthesize a high-precision velocity controller for IPMSM(Interior Permanent Magnet Synchronous Motor) using this method, the period of control loop should be very small. However, because of the resolution of the encoder for speed measurement, control cycle is limited, which makes it difficult to improve the performance of the controller. This paper proposes a velocity controller design method based on nonlinear adaptive back-stepping method to accomplish fast and accurate performance. Here, an EKF(Extended Kalman Filter) method is incorporated for the estimation of the motor speed into the design of a speed controller using adapted back-stepping control technique. The performance of the proposed controller is demonstrated through simulation using PSIM.

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Yoon Y.H;Lee S.J;Kim Y.R;Won C.Y;Choe Y.Y
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 2005
  • The high performance drives of the slotless Permanent Magnet Brushless DC(PM BLDC) motor can be achieved by the current control, where the currents flow according to the rotor position and the current phase is suitably controlled according to the operational condition. Rotor position information can be provided by Hall-IC or sensorless algorithm. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor. Instead of using three Hall-ICs and encoder, this paper uses only two Hall-ICs for the permanent magnet rotor position and the speed feedback signals, and uses a micro-controller of 16-bit type (80C196KC). Also because of low resolution obtained by using Hall-IC even low-cost and simple structure, to improve the wide range of speed response characteristic more exactly, we propose the rotor position signal synthesizer using PLL circuit based on two Hall-ICs.

Subjective Video Quality Evaluation of H.265/HEVC Encoded Low Resolution Videos for Ultra-Low Band Transmission System (초협대역 전송 시스템상에서 H.265/HEVC 부호화 저해상도 비디오에 대한 주관적 화질 평가)

  • Uddina, A.F.M. Shahab;Monira, Mst. Sirazam;Chung, TaeChoong;Kim, Donghyun;Choi, Jeung Won;Jun, Ki Nam;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1085-1095
    • /
    • 2019
  • In this paper, we perform a subjective quality assessment on low-resolution surveillance videos, which are encoded with a very low target bit-rate to use in an ultra-low band transmission system and investigate the encoding effects on the perceived video quality. The test videos are collected based on their spatial and temporal characteristics which affect the perceived quality. H.265/HEVC encoder is used to prepare the impaired sequences for three target bit-rates 20, 45, and 65 kbps and subjective quality assessment is conducted to evaluate the quality from a viewing distance of 3H. The experimental results show that the quality of encoded videos, even at target bit-rate of 45 kbps can satisfy the users. Also we compare objective image/video quality assessment methods on the proposed dataset to measure their correlation with subjective scores. The experimental results show that the existing methods poorly performed, that indicates the need for a better quality assessment method.

Micro-CT System for Small Animal Imaging (소동물영상을 위한 마이크로 컴퓨터단층촬영장치)

  • Nam, Ki-Yong;Kim, Kyong-Woo;Kim, Jae-Hee;Son, Hyun-Hwa;Ryu, Jeong-Hyun;Kang, Seoung-Hoon;Chon, Kwon-Su;Park, Seong-Hoon;Yoon, Kwon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.102-112
    • /
    • 2008
  • We developed a high-resolution micro-CT system based on rotational gantry and flat-panel detector for live mouse imaging. This system is composed primarily of an x-ray source with micro-focal spot size, a CMOS (complementary metal oxide semiconductor) flat panel detector coupled with Csl (TI) (thallium-doped cesium iodide) scintillator, a linearly moving couch, a rotational gantry coupled with positioning encoder, and a parallel processing system for image data. This system was designed to be of the gantry-rotation type which has several advantages in obtaining CT images of live mice, namely, the relative ease of minimizing the motion artifact of the mice and the capability of administering respiratory anesthesia during scanning. We evaluated the spatial resolution, image contrast, and uniformity of the CT system using CT phantoms. As the results, the spatial resolution of the system was approximately the 11.3 cycles/mm at 10% of the MTF curve, and the radiation dose to the mice was 81.5 mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom imaging test. We found that the image non-uniformity was approximately 70 CT numbers at a voxel size of ${\sim}55{\times}55{\times}X100\;{\mu}^3$. We present the image test results of the skull and lung, and body of the live mice.

  • PDF

A User Driven Adaptive Bandwidth Video Streaming System (사용자 기반 가변 대역폭 영상 스트리밍 시스템)

  • Chung, Yeongjee;Ozturk, Yusuf
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.825-840
    • /
    • 2015
  • Adaptive bitrate (ABR) streaming technology has become an important and prevalent feature in many multimedia delivery systems, with content providers such as Netflix and Amazon using ABR streaming to increase bandwidth efficiency and provide the maximum user experience when channel conditions are not ideal. Where such systems could see improvement is in the delivery of live video with a closed loop cognitive control of video encoding. In this paper, we present streaming camera system which provides spatially and temporally adaptive video streams, learning the user's preferences in order to make intelligent scaling decisions. The system employs a hardware based H.264/AVC encoder for video compression. The encoding parameters can be configured by the user or by the cognitive system on behalf of the user when the bandwidth changes. A cognitive video client developed in this study learns the user's preferences(i.e. video size over frame rate) over time and intelligently adapts encoding parameters when the channel conditions change. It has been demonstrated that the cognitive decision system developed has the ability to control video bandwidth by altering the spatial and temporal resolution, as well as the ability to make scaling decisions.

DEVELOPMENT OF NANO-FLUID MOVEMENT MEASURING DEVICE AND ITS APPLICATION TO HYDRODYNAMIC ANALYSIS OF DENTINAL FLUID (미세 물 흐름 측정장치의 개발과 상아세관액의 수력학에의 응용)

  • Lee, In-Bog;Kim, Min-Ho;Kim, Sun-Young;Chang, Ju-Hea;Cho, Byung-Hoon;Son, Ho-Hyun;Back, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.141-147
    • /
    • 2008
  • This study was aimed to develop an instrument for real-time measurement of fluid conductance and to investigate the hydrodynamics of dentinal fluid. The instrument consisted of three parts; (1) a glass capillary and a photo sensor for detection of fluid movement, (2) a servo-motor, a lead screw and a ball nut for tracking of fluid movement, (3) a rotary encoder and software for data processing. To observe the blocking effect of dentinal fluid movement, oxalate gel and self-etch adhesive agent were used. BisBlock (Bisco) and Clearfil SE Bond (Kuraray) were applied to the occlusal dentin surface of extracted human teeth. Using this new device, the fluid movement was measured and compared between before and after each agent was applied. The instrument was able to measure dentinal fluid movement with a high resolution (0.196 nL) and the flow occurred with a rate of 0.84 to 15.2 nL/s before treatment. After BisBlock or Clearfil SE Bond was used, the fluid movement was decreased by 39.8 to 89.6%.

Selective B Slice Skip Decoding for Complexity Scalable H.264/AVC Video Decoder (H.264/AVC 복호화기의 복잡도 감소를 위한 선택적 B 슬라이스 복호화 스킵 방법)

  • Lee, Ho-Young;Kim, Jae-Hwan;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.79-89
    • /
    • 2011
  • Recent development of embedded processors makes it possible to play back video contents in real-time on portable devices. Because of their limited battery capacity and low computational performance, however, portable devices still have significant problems in real-time decoding of high quality or high resolution compressed video. Although previous approaches are successful in achieving complexity-scalable decoder by controlling computational complexity of decoding elements, they cause significant objective quality loss coming from mismatch between encoder and decoder. In this paper, we propose a selective B slice skip-decoding method to implement a low complexity video decoder. The proposed method performs selective skip decoding process of B slice which satisfies the proposed conditions. The skipped slices are reconstructed by simple reconstruction method utilizing adjacent reconstructed pictures. Experimental result shows that proposed method not only reduces computational complexity but also maintains subjective visual quality.

Real-time Segmentation of Black Ice Region in Infrared Road Images

  • Li, Yu-Jie;Kang, Sun-Kyoung;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, we proposed a deep learning model based on multi-scale dilated convolution feature fusion for the segmentation of black ice region in road image to send black ice warning to drivers in real time. In the proposed multi-scale dilated convolution feature fusion network, different dilated ratio convolutions are connected in parallel in the encoder blocks, and different dilated ratios are used in different resolution feature maps, and multi-layer feature information are fused together. The multi-scale dilated convolution feature fusion improves the performance by diversifying and expending the receptive field of the network and by preserving detailed space information and enhancing the effectiveness of diated convolutions. The performance of the proposed network model was gradually improved with the increase of the number of dilated convolution branch. The mIoU value of the proposed method is 96.46%, which was higher than the existing networks such as U-Net, FCN, PSPNet, ENet, LinkNet. The parameter was 1,858K, which was 6 times smaller than the existing LinkNet model. From the experimental results of Jetson Nano, the FPS of the proposed method was 3.63, which can realize segmentation of black ice field in real time.