• Title/Summary/Keyword: enclosure fire

Search Result 60, Processing Time 0.023 seconds

A Study on the Precautions Effects of the Enclosure Integrity Test for the Gaseous Extinguishing Systems: Focusing on the Power Plant (가스계 소화설비의 밀폐도 시험에 영향을 미치는 사전조치에 관한 연구: 발전소를 중심으로)

  • Kim, Young-Chul;Jo, Il-Hyun;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.60-66
    • /
    • 2015
  • The present study was aimed to analyze enclosure integrity test, which is the performance experiment of soaking time, in a fire zone equipped with gaseous extinguishing system in an effort to find understand the effect of precaution factors upon the success of fire extinguishment. To achieve the goal of this study, it divided the fire zones of internal and external power plants into ones taking precaution measures and not taking them and then enclosure integrity test was given respectively. Therefore, this study examined the success rate if the test according to the presence and absence of the precaution measure and confirmed the failure factors, designed concentration soaking time and proportion of leakage area to total volume area by type of gaseous extinguishing system and rooms. Precaution measures were applied to the fire zones without them to confirm the increase of the success rate of enclosure integrity test. By doing so, it was found that reduced number of experiments caused by failure led to cost saving.

The Theory of Smoke Movement by a Fire in an Enclosure (밀폐공간에서의 화재에 의한 연기의 유동 이론)

  • 노재성;유홍선
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.5-9
    • /
    • 1996
  • In foreign country such as U.S.A and Japan, considerable research has been done regarding the spread of smoke in room of fire involvement by using computer. But, in our country it has not been. So, this paper presents a detailed qualitative description of phenomena which occures during typical fire scenarios through numerical analysis. This research, in the view of field model, is focused on finding out the smoke movement and temperature distribution. And it is planned to analyze governing equation including smoke diffusion equation by numerical analysis with finite volume method and non-staggered grid system. The SIMPLE method for pressure-velocity couple and power-law scheme for convection terms are used. It shows that a plume is formed, hot plume is formed, hot plume gases impinge on the ceiling and they spread across it. then, it eventually reaches the bounding walls of the enclosure. It takes 60s for smoke to fill the enclosure.

  • PDF

A Study of Thermal and flow Characteristics Induced by Fire in a Partial Enclosure (부분밀폐공간내에서 화재로 야기되는 열 및 유동특성에 관한 연구)

  • 박희용;한철희;박경우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1288-1300
    • /
    • 1994
  • Mathematical modeling and numerical calculation on the flow and thermal characteristics induced by fire in a partial enclosure are performed. The solution procedures include the Shvab-Zeldovich approximation for the physical transport equations, low Reynolds number k-.epsilon. model for the turbulent fluid flow and Discrete Ordinate method(DOM) to calculate the radiative heat transfer. PMMA(Polymethylmethacrylate) is adopted as a solid fuel. Two different cases are considered : combustions with and without gas radiation occuring in a open cavity for variable pyrolyzing location of PMMA. When the fire source is located at the left-wall, the flow region of flame gas is limited at the left-wall and ceiling and recirculation region of inlet gas is formulated at neat the floor. In case of neglecting the radiative heat transfer, more large flame size and higher temperature is predicted. It is essential to consider the radiative heat transfer for analysis of fire phenomenon.

Examination on Effect of Horizontal Vent Position on Fire Phenomena in Enclosure (구획실 화재 현상에 대한 수평 개구부 위치의 영향 검토)

  • Park, Yu Mi;Lee, Chi Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.235-236
    • /
    • 2022
  • In the present study, the effect of horizontal vent position on fire phenomena in the enclosure with vertical and horizontal vents was examined using numerical simulation. Case 1 indicates the condition that the horizontal vent is in the center of the ceiling. Case 3 indicates the condition that the horizontal vent is far away from the vertical vent. Case 2 indicates the condition that the horizontal vent is installed between Case 1 and Case 3. The temperature distribution, smoke layer temperature, velocity distribution, and mass flow rate of horizontal vent flow were analyzed. In Case 2, the temperatures were lowest and the mass flow rate through the horizontal vent was largest. This is because the flame is inclined by the inflow through the vertical vent. Hence, to determine the proper horizontal vent location for the high smoke ventilation performance, the inflow through the vertical vent and its effect on flame behavior should be considered.

  • PDF

Numerical Study On Combined Natural Convection-Radiation In Partially Open Square Compartments with A Heater (발열체가 있는 열린 공간내에서의 자연대류-복사열전달 현상에 관한 수치적 연구)

  • 손봉세;한규익;서석호;이재효;김태국
    • Fire Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.10-19
    • /
    • 1995
  • Study on combined natural convection-radiation In partially open square enclosures filled with absorbing-anisotropic scattering media is performed. A heater block located in the enclosure causes the natural circulation of the fluid in the enclosure which results In significant in-flow of the cold fluid through the partially open wall. Four different locations of the heater are considered to observe the effect of the heater locations on the resulting heat transfer. Results obtained from the combined convection-radiation analyses show much stronger circulation of t he fluid inside the enclosure as compared to those obtained from the pure convection analyses. As the ratio of the open area is Increased, the inflow of the cold fluid and the circulation of the fluid inside the enclosure is increased causing lower fluid temperature Inside the enclosure. It is shown that the location of the heater influences the circulation and heat transfer significantly by showing stronger circulations and more uniform temperature distributions for the cases where the heater is located on the bottom wall as compared to those for the cases where the heater is located on the upper part wall of the enclosure. For pure absorbing medium, the expected circulation in the fluid is relatively week as compared to those with absorbing-scattering medium due to the smaller wall heating as the radiant heat is used to heat the fluid instead. The forward anisotropic scattering phase function is shown to increase the fluid circulation further as compared to the isotropic scattering medium.

  • PDF

An Study on control of explosion pressure in enclosure (내압 폭발 압력 조정에 관한 연구)

  • Kim, Hong-Sik;Oh, Dae-Hee;Oh, Kyu-Hyung;Choi, Beom-Shik;Lee, Sung-Eun;Moon, Young-Gil
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.189-193
    • /
    • 2008
  • A Control variables of explosion pressure in enclosure are a type of explosive gas, concentration of mixture, open area in enclosure. In this study, be performed to test inner explosion pressure of Blast Proof Door by the control variables of explosion pressure. and this real explosion test of Blast Proof Door have a good point in test of the against pressure method that can be obtained dynamic pressure or not static pressure.

  • PDF

An Experimental Study on the Determination of the Flow Rate for a Feasible $N_2$ Generator to Extinguish the Fire (소화성능이 있는 질소발생기의 방사량 결정에 관한 실험적 연구)

  • Jang, Young-Keun;Kim, Duk-Joo;Suh, Byung-Taek
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.54-60
    • /
    • 2010
  • An experimental study has been carried out to determine the flow rate for a feasible N2 generator to extinguish the fire, and this study analogized the correlations to determine the flow rate for $N_2$ generator considered an Oxygen concentration, protected enclosure, discharging pressure and discharging time. We manufactured simple protected enclosure for analyzing fire-extinguishing performance of the $N_2$ generator. As a $N_2$ gas is exhausted on protected enclosure, a various of Oxygen concentration is measured to analyze fire-extinguishing performance experimentally. The correlations determined as an uncertainty analysis for the Oxygen concentration deviations of the theoretical and experimental value. The analogized correlations is Q = (21 $\times$ V)/($O_2+{\zeta}{\cdot}P$)-V. In case of $300m^3$ protected enclosure, 0.8 MPa discharging pressure and $40m^3$/min $N_2$ flow rate, the Oxygen concentration is decreased below 15% within 3 minutes.

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

Smoke Movement by a Fire in an Enclosure (밀폐 공간내에서의 화재에 의한 연기의 유동)

  • 노재성;유홍선;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.10-18
    • /
    • 1996
  • In foreign country such as USA and Japan, considerable research has been done regarding the spread of smoke in room of fire involvement by using computer. but, in our country it has not been, so, this paper presents a detailed qualitative description of phenomena which occure during typical fire scenarios through numberical analysis. The governing equations are solved by using FVM method with non-staggered grid. The SIMPLE method for pressure-velocity couple and power-law scheme for convention terms are used. It shows that a plume is formed, hot plume gases impinge on the ceiling and they spread across it. then, it eventually reaches the bounding walls of the enclosure. It takes 20s for smoke to fill the enclosure.

  • PDF

A Study on the Application of Fire Protection Facilities in Large Enclosure Gymnasium (대규모 실내경기장의 소방방재설비 적용현황 분석)

  • Choi, Dong-Ho;Kim, Choon-Dong;Yang, Jeong-Hoon;Cho, Young-Hum
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.135-145
    • /
    • 2010
  • The objective of this study is to draw basic data for the application of the fire protection planning for the future plan large enclosure buildings in Korea through an analysis of its characteristics by case studies of the domestic and foreign large scale gymnasiums. In this study, domestic building codes for the fire protection are investigated and fire detection systems, fire extinguishing systems, smoke control systems and evacuation systems of three large scale gymnasiums located at Korea and eight foreign countries are compared and analyzed. The results of this study show that infrared light fire detection system and flame detector for spacial characteristics are potentially used in fire protection systems of large scale gymnasiums: dry type sprinkler and sprinkler water gun are adopted in fire detection system; and smoke accumulation system is widely utilized in smoke control system.

  • PDF