• Title/Summary/Keyword: encapsulation stability

Search Result 129, Processing Time 0.029 seconds

Palmitoylpolysaccharide-coated Liposomes As A Potential Oral Drug Carrier (경구용 약물수송체로서의 팔미토일 치환 다당체로 코팅된 리포좀)

  • Hahn, Yang-Hee;Yi, Jung-Woo;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • Applications of liposomes as a drug carrier for the oral delivery of poorly-absorbable macromolecular drugs have been limited, because of their instability in gastrointestinal environments including pH, bile salts, and digestive enzymes. Two polysaccharides, dextran(DX) and pullulan(PL), were introduced to the preformed liposomes in order to enhance the stability. Palmitoyl derivatives of polysaccharides, palmitoyldextran(PalDX) and palmitoylpullulan(PalPL), were synthesizd and introduced to the liposomes during preparation for the same purpose of stability. The effects of these polysaccharides coating were evaluated basically by physical properties of particle size distribution and optical microscopy, then compared with uncoated liposomes by the observations of both in vitro stability and in vovo absorption characteristics. The geometric mean diameters of polysaccharide-coated liposomes were greater than that of uncoated liposome, showing the outermost polysaccharide-coated layer under the optical microscopy. In vitro stabilities of uncoated or polysaccharides-coated liposomes were measured by turbidity changes in various pH buffer solutions containing sodium choleate as bile salts. While uncoated liposome was very sensitive to bile salts, polysaccharides-coated liposomes were stable in relatively higher concentrations of sodium choleate, giving the results of better stability of PalDX- and PalPL-coated liposomes than that of DX- and PL-coated liposomes. After liposomal encapsulation of acyclovir(ACV), an antiviral agent as a model drug, it has been administered orally to rats as dose of ACV 40 mg/kg. Plasma concentrations of ACV were assayed by HPLC and analyzed by model-independent pharmacokinetics. Pharmacokinetic parameters of Cmax, tmax, and [AUC] have been compared.

  • PDF

Preparation of γ-oryzanol-loaded pectin micro and nanocapsules and their characteristics according to particle size (감마오리자놀 함유 칼슘-펙틴 미세 및 나노캡슐의 제조와 입자 크기에 따른 캡슐특성)

  • Lee, Seul;Kim, Eun Suh;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.110-116
    • /
    • 2017
  • ${\gamma}-Oryzanol-loaded$ calcium-pectin micro- and nanocapsules were prepared by ionic gelation to improve oxidation stability and the effect of particle size on capsule properties was investigated. The physical properties were influenced by preparation conditions such as concentrations of pectin, $CaCl_2$, ${\gamma}-oryzanol$, and hardening time. Particle sizes of micro- and nanocapsules that showed the maximum encapsulation efficiency and sustained release were $2.27{\pm}0.02mm$ and $347.7{\pm}58.1nm$, respectively. Microcapsules showed higher encapsulation efficiency ($50.73{\pm}1.98%$) than nanocapsules ($17.70{\pm}2.04%$), while nanocapsules showed more sustained release and higher stability than microcapsules. Release of ${\gamma}-oryzanol$ from both microand nanocapsules, which was low in gastric environments and promoted in intestinal environments, showed suitable characteristics for oral administration. Furthermore, antioxidant activity of ${\gamma}-oryzanol$ against autoxidation of linoleic acid was prolonged by both micro- and nanoencapsulation in a ferric thiocyanate test. Therefore, micro- and nanoencapsulation using pectin can be effective for improving biodelivery, stability, and antioxidant activity of ${\gamma}-oryzanol$.

Physical Property and Stability of Liposome Prepared from Egg Yolk Phospholipids at Various Storage Conditions (난황 유래 인지철로 합성한 리포좀의 물리적 특성과 안정성)

  • Park, Sun-Hyun;Kim, Myung-Hee
    • Food Science of Animal Resources
    • /
    • v.28 no.5
    • /
    • pp.549-554
    • /
    • 2008
  • Liposomes were prepared from egg yolk phospholipids to study their physical properties and stability at various storage conditions. Under storage conditions at different pH levels, the particle sizes of liposomes increased at the range of pH 1-2, and the absolute values of $\xi$-potentials were reduced at the range of pH 1-4. The leakage of sulforhodamine B (SRB), a fluorescent dye which is encapsulated in the liposome, increased greatly at pH 2-4. At different storage temperatures, the particle size of liposomes increased from the 10 days of storage at $4^{\circ}C$ and the 40 days at 20 and $35^{\circ}C$. The $\xi$-potentials decreased slightly later during storage under 4, 20 and $35^{\circ}C$. At the storage temperature of $50^{\circ}C$, the leakage of SRB was the greatest. Therefore, we concluded that the pH conditions lower than pH 6 and high temperature of $50^{\circ}C$ are not conducive to storing liposomes. The results obtained here may prove helpful in developing liposome-based encapsulation and diagnostic reagents.

Effects of Lipid Composition on the Properties of Phospholipid Liposomal Membranes (리포솜 지질막의 성질에 미치는 지질 조성의 영향)

  • Kim, Min;Han, Suk-Kyu;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.38 no.2
    • /
    • pp.131-139
    • /
    • 1994
  • Calcein-encapsulated small unilamellar vesicles of various lipid composition were prepared using the sonication technique, and their stabilities at $20^{\circ}C$ were examined by measuring calcein leakage from the liposomes. The fluidity of these liposomal bilayers was also investigated by measuring the fluorescence polarization of DPH labelled into the liposomes. The results showed that liposomes made of PC mixtures with different acyl chain length were very stable, which may be due to the formation of interdigitated bilayer structure. The addition of cholesterol further stabilized these PC liposomes. However, addition of cholesterol reduced the encapsulation efficiences of liposomes. The fluidity of the liposomes was significantly decreased by cholesterol in the liquid crystalline state, but not changed in the gel state. These results suggest that the enhanced stability of PC mixture liposomes may be ascribed to the formation of stable interdigitated bilayer structure. In membrane-mimetic and drug-delivery studies, vesicles made of mixtures of various phospholipids are recommended instead of addition of cholesterol to the phospholipid.

  • PDF

Comparative Characterization Study on Quality Attributes of Vegetable and Gelatin as Capsule Shell of Soft Capsule (연질캡슐 피막물질로서 식물성 성분 원료와 젤라틴에 대한 품질특성 비교)

  • Kim, Dong Wook;Weon, Kwon Yeon
    • YAKHAK HOEJI
    • /
    • v.59 no.2
    • /
    • pp.70-76
    • /
    • 2015
  • A Softgel is an oral dosage form for medicine similar to capsules and softgel dosage form offers several advantages over other oral dosage forms, such as delivering a liquid matrix designed to solubilize and improve the oral bioavailability of a poorly soluble compound as a unit dose solid dosage form, delivering low and ultra-low doses of a compound. This study aimed to qualify a proprietary vegetable soft capsule which contains modified starch and carrageenan as capsule shell components compare to the conventional gelatin softgel. Four kinds of samples were prepared with vegetable and gelatin capsule shell, respectively. Morphology of capsule shell, mechanical strength of capsule, and hygroscopic properties were studied for comparing the quality attributes of softgel. Short-term stability against heat and moisture was also investigated in this study. Vegetable capsule shell showed better mechanical strength, physical stability and disintegration time for temperature and humidity than those of conventional gelatin capsule shell with four different filling materials used frequently as soft capsule form. Conclusively, this vegetable capsule shell polymer system can replace easily gelatin-shell systems and additionally allows encapsulation of lipid fills at high temperatures that are semisolid or solid-like at room temperature.

Analysis of Ingredient Mixtures for Cryoprotection and Gastrointestinal Stability of Probiotics (프로바이오틱스의 동결보호 및 장관안정성 개선을 위한 첨가제 효과 분석)

  • Jeong, Eun Ji;Moon, Dae Won;Oh, Joon Suk;Moon, Jin Seok;Kim, Kwang Yup;Choi, Hye Sun;Han, Nam Soo
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.109-113
    • /
    • 2015
  • Current drying and encapsulation methods for probiotics manufacturing are complicate and cost-burdened processes. The aim of this study was to develop a simple ingredient mixture to make probiotic granules via one-step process, providing not only a cryoprotective effect during freezing and drying but also high survival ratio in gastrointestinal tract. As cryoprotectans, commercially available ingredients including skim milk, monosaccharide (trehalose or glycerin), maltodextrins (with low or high degree of equivalents) were used. Their cryoprotective effect during lyophilization and survival ratios in artificial gastric juice and bile salt were measured against 3 strains of lactic acid bacteria (LAB) (Lactobacillus plantarum, Lb. brevis, and Lactococcus lactis). As results, 3 mixtures with different compositions showed a cryprotective effect on LAB tested and the best compostion was dependant upon LAB; skim milk 10%, trehalose 15%, glycerin 0.5%, and NaCl 1% was for Lb. plantarum and Lc. lactis, and maltodextrin 10% instead of skim milk was for Lb. brevis. In addition, those mixtures showed similar survival effect on LAB tested. These results demonstrate that skim milk or maltodextrins with trehalose, glycerin, and NACl can be effectively used for onestep lyophilization of LAB as an alternative method of encapsulation.

Recombinant Human Epidermal Growth Factor (rhEGF)-loaded Solid Lipid Nanoparticles: Fabrication and Their Skin Accumulation Properties for Topical rhEGF Delivery

  • Hwang, Hee-Jin;Han, Sunhui;Jeon, Sangok;Seo, Joeun;Oh, Dongho;Cho, Seong-Wan;Choi, Young Wook;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2290-2294
    • /
    • 2014
  • For the present study, rhEGF was encapsulated into solid lipid nanoparticles (SLNs). The SLNs were prepared by the $W_1/O/W_2$ double emulsification method combined with the high pressure homogenization method and the physical properties such as particle size, zeta-potential and encapsulation efficiency were measured. The overall particle morphology of SLNs was investigated using a transmission electron microscopy (TEM). The percutaneous skin permeation and accumulation property of rhEGF was evaluated using Franz diffusion cell system along with confocal laser scanning microscopy (CLSM). The mean particle size of rhEGF-loaded SLNs was $104.00{\pm}3.99nm$ and the zeta-potential value was in the range of -$36.99{\pm}0.54mV$, providing a good colloidal stability. The TEM image revealed a spherical shape of SLNs about 100 nm and the encapsulation efficiency was $18.47{\pm}0.22%$. The skin accumulation of rhEGF was enhanced by SLNs. CLSM image analysis provided that the rhEGF rat skin accumulation is facilitated by an entry of SLNs through the pores of skin.

Amperometric Glucose Biosensor Based on Sol-Gel-Derived Zirconia/Nafion Composite Film as Encapsulation Matrix

  • Kim, Hyun-Jung;Yoon, Sook-Hyun;Choi, Han-Nim;Lyu, Young-Ku;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • An amperometric glucose biosensor has been developed based on the use of the nanoporous composite film of sol-gel-derived zirconia and perfluorosulfonated ionomer, Nafion, for the encapsulation of glucose oxidase (GOx) on a platinized glassy carbon electrode. Zirconium isopropoxide (ZrOPr) was used as a sol-gel precursor for the preparation of zirconia/Nafion composite film and the performance of the resulting glucose biosensor was tuned by controlling the water content in the acid-catalyzed hydrolysis of sol-gel stock solution. The presence of Nafion polymer in the sol-gel-derived zirconia in the biosensor resulted in faster response time and higher sensitivity compared to those obtained at the pure zirconia- and pure Nafion-based biosensors. Because of the nanoporous nature of the composite film, the glucose biosensor based on the zirconia/Nafion composite film can reach 95% of steady-state current less than 5 s. In addition, the biosensor responds to glucose linearly in the range of 0.03-15.08 mM with a sensitivity of 3.40 $\mu$A/mM and the detection limit of 0.037 mM (S/N = 3). Moreover, the biosensor exhibited good sensor-to-sensor reproducibility (~5%) and long-term stability (90% of its original activity retained after 4 weeks) when stored in 50 mM phosphate buffer at pH 7 at 4 ${^{\circ}C}$.

Antileishmanial Activity of Niosomal Combination Forms of Tioxolone along with Benzoxonium Chloride against Leishmania tropica

  • Parizi, Maryam Hakimi;Farajzadeh, Saeedeh;Sharifi, Iraj;Pardakhty, Abbas;Parizi, Mohammad Hossein Daie;Sharifi, Hamid;Salarkia, Ehsan;Hassanzadeh, Saeid
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.359-368
    • /
    • 2019
  • In this study, we carried out extensive in vitro studies on various concentrations of tioxolone along with benzoxonium chloride and their niosomal forms against Leishmania tropica. Niosomes were prepared by the hydration method and were evaluated for morphology, size, release study, and encapsulation efficiency. This study measured leishmanicidal activity against promastigote and amastigote, apoptosis and gene expression levels of free solution and niosomal-encapsulated tioxolone along with benzoxonium chloride. Span/Tween 60 niosome had good physical stability and high encapsulation efficiency (more than 97%). The release profile of the entrapped compound showed that a gradual release rate. The combination of niosomal forms on promastigote and amastigote were more effective than glucantime. Also, the niosomal form of this compound was significantly less toxic than glucantime ($P{\leq}0.05$). The flowcytometric analysis on niosomal form of drugs showed that higher number of early apoptotic event as the principal mode of action (89.13% in $200{\mu}g/ml$). Also, the niosomal compound increased the expression level of IL-12 and metacaspase genes and decreased the expression level of the IL-10 gene, which further confirming the immunomodulatory role as the mechanism of action. We observed the synergistic effects of these 2 drugs that induced the apoptotic pathways and also up regulation of an immunomodulatory role against as the main mode of action. Also, niosomal form of this combination was safe and demonstrated strong anti-leishmaniasis effects highlights further therapeutic approaches against anthroponotic cutaneous leishmaniasis in future planning.

Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucoidan

  • Kim, Eun Suh;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.236-245
    • /
    • 2021
  • Background: Red ginseng (RG) extract, especially ginsenoside Rg1 and Rb1 fractions has been reported to have antithrombotic activities. However, gastric instability and low intestinal permeability are considered to be obstacles to its oral administration. We hypothesized that stability, permeability, and activities of RG might be improved by encapsulation within nanoparticles (NPs) prepared with antithrombotic coating materials. Methods: RG-loaded chitosan (CS) NPs (PF-NPs) were prepared by complex ionic gelation with the antithrombotic wall materials, polyglutamic acid (PGA), and fucoidan (Fu). The concentrations of PGA (mg/mL, X1) and Fu (mg/mL, X2) were optimized for the smallest particle size by response surface methodology. Antithrombotic activities of RG and PF-NPs were analyzed using ex vivo and in vivo antiplatelet activities, in vivo carrageenan-induced mouse tail, and arteriovenous shunt rat thrombosis models. Results: In accordance with a quadratic regression model, the smallest PF-NPs (286 ± 36.6 nm) were fabricated at 0.628 mg/mL PGA and 0.081 mg/mL Fu. The inhibitory activities of RG on ex vivo and in vivo platelet aggregation and thrombosis in in vivo arteriovenous shunt significantly (p < 0.05) increased to approximately 66.82%, 35.42%, and 38.95%, respectively, by encapsulation within PF-NPs. For an in vivo carrageenan-induced mouse tail thrombosis model, though RG had a weaker inhibitory effect, PF-NPs reduced thrombus significantly due to the presence of PGA and Fu. Conclusion: PF-NPs contributed to improve the activities of RG not only by nanoencapsulation but also by antithrombotic coating materials. Therefore, PG-NPs can be suggested as an efficient delivery system for oral administration of RG.