• Title/Summary/Keyword: enantiopure epoxides

Search Result 11, Processing Time 0.035 seconds

Molecular Engineering of Epoxide Hydrolases for Production of Enantiopure Epoxides (분자공학 기반의 광학활성 에폭사이드 제조용 epoxide hydrolase 생촉매 개발)

  • Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.168-174
    • /
    • 2006
  • Enantiopure epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are versatile biocatalysts for the preparation of enantiopure epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-prepare catalysts. In this paper, recent progresses In molecular engineering of EHs are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of enantiopure epoxides.

Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives (미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성)

  • Lee, Eun-Yeol;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.

Enantioconvergent Hydrolysis of Racemic Epoxides for Production of Enantiopure Epoxides and Vicinal Diols using Epoxide Hydrolases (에폭사이드 가수분해효소에 의한 광학수렴반응을 이용한 광학활성 에폭사이드 및 Vicinal Diol 제조)

  • Lee, Eun-Yeol
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.123-128
    • /
    • 2007
  • One drawback of conventional kinetic resolution of racemic epoxides by epoxide hydrolase (EH) is that the theoretical yield can never exceed 50%. This 50% limitation can be overcome by using enantioconvergent process, in which both enantiomers of the racemic epoxide are transformed via stereochemically matching pathways into a single enantiopure diol as the sole product in 100% theoretical yield. In order to make a single enantiopure vicinal diol, the two enantiomers of the racemic epoxide must be hydrolyzed with retention and inversion of configuration each other. The EHs should be enantio- and regiospecific at the same time. The enantioconvergent hydrolysis with EHs and relevant biotransformation for preparing enantiopure epoxides and vicinal diols with a high yield are reviewed.

Production of enantiopure epoxides by yeast epoxide hydrolase using a two-phase membrane bioreactor (한국생물공학회 정기총회 및 연구논문발표회 발표논문)

  • Choe, Won-Jae;Choe, Cha-Yong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.145-148
    • /
    • 2000
  • Large-scale resolution of epoxides by the yeast Rhodotorula glutinis was demonstrated in an aqueous/organic two-phase cascade membrane bioreactor. Due to the chemical instability and low solubility of epoxides in aqueous phases, an organic solvent was introduced into the reaction mixture in order to enhance resolution of epoxide. A cascade hollow-fiber membrane bioreactor was used (i) to minimize the toxicity of organic solvents towards the epoxide hydrolase of Rhodotorula glutinis, and (ii) to remove inhibitory amounts of formed diol from the yeast cell containing aqueous phase. Dodecane was selected as a suitable solvent and 1,2-epoxyhexane as a model substrate. By use of this membrane bioreactor, highly concentrated (0.9 M in dodecane) enantiopure (>98% ee) (S)-1,2-epoxyhexane (6.5 g, 30% yield) was obtained from its racemic mixture.

  • PDF

Synthesis of Chiral Intermediates Catalyzed by New Chiral Polymeric (Salen) Cobalt Complexes Bearing Lewis Acidic Metal Halides

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1553-1561
    • /
    • 2007
  • The new type of heterometallic chiral polymer salen complexes have been synthesized and it has been found that group 13 metal salts (AlCl3, GaCl3 and InCl3) combined to cobalt salen unit played the crucial role in the asymmetric kinetic resolution of racemic epoxides. Polymeric salen catalysts showed very high reactivity and enantioselectivity for the asymmetric ring opening of terminal epoxide with diverse nucleophiles. They provide the enantiopure useful chiral intermediates such as chiral terminal epoxides and α -aryloxy alcohols in one-step process. An efficient methodology for providing very high enantioselectivity can be achieved in the synthesis of valuable chiral building blocks via our catalytic system by combination of various asymmetric ring opening reactions.

Epoxide Hydrolase-catalyzed Hydrolytic Kinetic Resolution for the Production of Chiral Epoxides (에폭사이드 가수분해효소에 의한 동력학적 가수분해반응을 이용한 광학활성 에폭사이드 생산)

  • 이은열
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.321-325
    • /
    • 2002
  • Chiral epoxides are valuable intermediates for the asymmetric synthesis of enantiopure bioactive compounds. Microbial epoxide hydrolases (EHs) are newly discovered enzymes and versatile biocatalysts for the preparation of chiral epoxides by enantioselective hydrolysis of cheap and easily available racemic epoxide substrates. EHs are commercially potential biocatalysts due to their characteristics such as high enantioselectivity, cofactor-independent catalysis, and easy-to-Prepare catalysts. In this Paper, recent progresses in biochemistry and molecular biology of EH and developments of novel reaction systems are reviewed to evaluate the commercial feasibility of EH-catalyzed hydrolytic kinetic resolution for the production of chiral epoxides.

광학활성 Styrene Oxide 제조를 위한 고기능성 유전자 재조합 Epoxide Hydrolase 생촉매 개발

  • Lee, Su-Jeong;Lee, Ji-Won;Lee, Eun-Jeong;Kim, Hui-Suk;Lee, Eun-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.435-438
    • /
    • 2003
  • Epoxide hydrolase(EH) catalyze the enantioselective hydrolysis of racemic epoxides to corresponding diols. A recombinant Pichia pastoris with EH from Rhodotorula glutinis has been constructed by reverse transcriptase-polymerase chain reaction(RT-PCR). The recombinant biocatalyst enantioselectively hydrolyze (R)-styrene oxide faster than (S)-enantiomer. The catalytic activity of recombinant biocatalyst was 7-fold higher than that of wild-type strain. The recombinant EH biocatalyst can be used for kinetic resolution for the production of enantiopure styrene oxide.

  • PDF

Synthesis of Enantiopure Epoxide Compounds Using Dimeric Chiral Salen Catalyst (이량체구조를 갖는 키랄 살렌 촉매를 이용한 고 광학순도의 에폭사이드 화합물 합성)

  • Kim, Geon-Joong;Kim, Seong-Jin;Li, Wenji;Chen, Shu-Wei;Shin, Chang-Kyo;Thakur, Santosh S.
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.647-661
    • /
    • 2005
  • The stereoselective synthesis of chiral terminal epoxide is of immense academic and industrial interest due to their utility as versatile starting materials as well as chiral intermediates. In this review, we investigate the research and development trend in the asymmetric ring opening reactions using cobalt salen catalysts. Hydrolytic kinetic resolution (HKR) technology is the very prominent way to prepare optically pure terminal epoxides among available methods. We have synthesized homogeneous and heterogeneous chiral dinuclear salen complexes and demonstrated their catalytic activity and selectivity for the asymmetric ring opening of terminal epoxides with variety of nucleophiles and for asymmetric cyclization to prepare optically pure terminal epoxides in one step. The resolved ring opened product combined with ring closing in the presence of base and catalyst afforded the enantioriched terminal epoxides in quantitaive yield. Potentially, these catalysts are using on an industrial scale to produce chiral intermediates. The experimental results of HKR technology applied to the synthesis of various chiral compounds are presented in this paper.