Browse > Article

Enantioconvergent Hydrolysis of Racemic Epoxides for Production of Enantiopure Epoxides and Vicinal Diols using Epoxide Hydrolases  

Lee, Eun-Yeol (Department of Food Science and Biotechnology, Kyungsung University)
Publication Information
KSBB Journal / v.22, no.3, 2007 , pp. 123-128 More about this Journal
Abstract
One drawback of conventional kinetic resolution of racemic epoxides by epoxide hydrolase (EH) is that the theoretical yield can never exceed 50%. This 50% limitation can be overcome by using enantioconvergent process, in which both enantiomers of the racemic epoxide are transformed via stereochemically matching pathways into a single enantiopure diol as the sole product in 100% theoretical yield. In order to make a single enantiopure vicinal diol, the two enantiomers of the racemic epoxide must be hydrolyzed with retention and inversion of configuration each other. The EHs should be enantio- and regiospecific at the same time. The enantioconvergent hydrolysis with EHs and relevant biotransformation for preparing enantiopure epoxides and vicinal diols with a high yield are reviewed.
Keywords
Enantioconvergent hydrolysis; enantioselectivity; epoxide hydrolase; enantiopure vicinal diol; regioselectivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H. S., S. J. Lee, and F. Y. Lee (2006), Development and characterization of recombinant whole-cell biocatalysts cxpressing epoxkle hydrolase from Rhodotorula glutinis for enantioselective resolution of racemic epoxides, J. Mol. Catal, B: Enzymatic 43, 2-8   DOI   ScienceOn
2 Archelus, A. (1998), Fungal epoxide hydrolases: new tools for the synthesis of enantiopure epoxides and diols, J. Mol, Catal, B: Enzymatic 5, 79-85   DOI   ScienceOn
3 Turner, N. J. (2003), Controlling chirality, Curr. Opin. Biotechnol. 14, 2003, 401-406   DOI   ScienceOn
4 Strauss, U. T., U. Fclfer, and K. Faber (1999), Blocatalytlc transformation of racemates into chiral building blocks in 100% chemical yield and 100% enantiomerlc excess, Tetrahedron: Asymmetry 10, 107-117   DOI   ScienceOn
5 Manoj, K. M., A. Archelas, J. Barati, and R. Furstoss (2001), Microbiological transtormationa 45. A green chemistry preparative scale, synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolase-catalyzed hydrolytic kinetic resolution process, Tetrahedron 57, 695-701   DOI   ScienceOn
6 Genzel, Y., A. Archelas, Q. B. Broxterman, B. Schulze, and R. Furstoss (2002), Microbiological transformations 50: selection of epoxide hydrolases for enzymatic resolution of 2-, 3- or 4-pyridyloxirane, J. Mol. Catal, B: Enzymatic 16, 217-222   DOI   ScienceOn
7 Bellucci, G., C. Chiappe, A. Cordoni, and G. Ingrosso (1996), Enantioconvergent transformation of racemic cis-dialkyl substituted epoxides to (R,R) threo diols by microsomal epoxlde hydrolase catalysed hydrolysis, Tetrahedron Lett. 37, 9089-9092   DOI   ScienceOn
8 Bellucci, G., C. Chiappe, and A. Cordoni (1996), Enantioconvergent transformation of racemic cis-$\beta$-alkyl substituted styrene oxides to (R.R) threo diols by microsomal epoxide hydrolase catalysed hydrolysis, Tetrahedron: Asymmetry 7, 197-202   DOI   ScienceOn
9 Cao, L., J. Lee, J. W. Chen, and T. K. Wood (2006), Enantioconvergent production of (R)-l-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum. and an evolved Agrobacterium rodiobacter AD1 epoxide hydrolases, Biotechnol. Bioeng. 94, 522-529   DOI   ScienceOn
10 Orru, R, V. A. and K. Faber (1999), Stereoselecrivities of microbial epoxide hydrolases, Curr. Opin, Chem, Biol, 3, 16-21   DOI   ScienceOn
11 Rui, L., L. Cao, W. Chen, K. F. Reardon, and T. K. Wood (2005), Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-l,2-diol, Appl. Environ. Microbiol. 71, 3995-4003   DOI   ScienceOn
12 Poessl, T. M., D. Kosjek, U. Ellmer, C. C. Gruber, K. Edegger, K. Faber, P. Hildebrandt, U. T. Bornscheuer, and W. Kroutil (2005), Non-racemic halohydrlns via biocatalytic hydrogen-reduction reduction of halo-ketones and one-pot cascade reaction to enantiopure epoxides, Adv. Synth. Catal. 347, 1827-1834   DOI   ScienceOn
13 Orru, R. V. A., S. F. Mayer, W. Kroutil, and K. Faber (1998), Chemoenzymatic deracemization of ($\pm$)-2,2-disubstituted oxiranes, Tetrahedron 54, 859-874   DOI   ScienceOn
14 Mayer, S. F., A. Steinreiber, R. V. A. Orru, and K. Faber (2001), An enzyme-triggered enantio-convergent cascade-reaction, Tetrahedron: Asymmetry 12, 41-43   DOI   ScienceOn
15 Orru, R. V. A., W. Kroutil, and K. Faber (1997), Deracemization of ($\pm$)-2,2-disubstituted epoxldes via enanioconvergent chemoenzymatic hydrolysis using Nocardia EH1 epoxide hydrolase and sulfuric acid, Tetrahedron Lett. 38, 1753-1754   DOI   ScienceOn
16 Monfort, N., A. Archelas, and R. Furstoss (2004), Enzymatic transformations. Part 55: Highly productive epoxide hydrolase catalyzed resolution of an azole antifungal key synthon, Tetrahedron 60, 601-605   DOI   ScienceOn
17 Han, J. H., M. S. Park, J. W. Bae, E. Y. Lee, Y. J. Yoon, S.-G. Lee, and S. Park (2006), Production of (S)-styrene oxide using styrene oxide isomerase negative, mutant of Pseudomonas putida SN1, Enzyme Microb. Technol. 39, 1264-1269   DOI   ScienceOn
18 Lee, F. Y. and M. L. Shuler (2007), Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis, Biotechnol, Bioeng, 95, in press
19 Steinreiber, A., S. F. Mayer, R. Saf, and K. Faber (2001), Biocatalytic asymmetric and enantioconvergent hydrolysis of trisubstitured oxiranes, Tetrahedron: Asymmetry 12, 1519-1528   DOI   ScienceOn
20 Chiappe, C., A. Cordoni, G. L. Moro, and C. D. Palese (1998), Deracemization of ($\pm$)-cis-dialkyl substituted oxides via enantioconvergent hydrolysis catalysed by microsomal epoxide hydrolase, Tetrahedron: Asymmetry 9, 341-350   DOI   ScienceOn
21 Kroutil, W., M. Mischitz, P. Plachota, and K. Faber (1996), Deracemization of ($\pm$)-cis-2,3-epoxyheptane via enantioconvergent biocatalytic hydrolysis using Nocardia EH1-epoxide hydrolase, Tetrahedron Lett. 46, 8379-8382
22 Glueck, S. M., S. F. Mayer, W. Kroutil, and K. Faber (2002), Advances in biocatalytic synthesis. Enzyme-triggered asymmetric cascade reactions, Pure Appl. Chem. 74, 2253-2257   DOI   ScienceOn
23 Faber, K. and W. Kroutil (2002), Stereoselectivity in blocatalytlc enantioconvergent reactions and a computer program for its determination, Tetrahedron: Asymmetry 13, 377-382   DOI   ScienceOn
24 Bdegger, K., S. F. Mayer, A. Steinreiber, and K. Faber (2004), Chemo-enzymatic enantio-convergent asymmetric synthesis of (R)-(+)-Marmin, Tetrahedron 60, 583-588   DOI   ScienceOn
25 Pedragosa-Moreau, S., C. Morisseau, J. Zylber, A. Archelas, J. Baratti, and R. Furstoss (1996), Microbiological transformations. 33 Fungal epoxide hydrolases applied to the synthesis of enantiopure para-substituted styrene oxides. A mechanistic approach, J. Org. Chem. 61, 7402-7407   DOI   ScienceOn
26 Besse, P. and H. vescharubre (1994), Chemical and biological synthesis of chiral epoxides, Tetrahedron 50, 8885-8927   DOI   ScienceOn
27 Lee, E. Y., S. S. Yoo, H. S. Kim, S. J. Lee, Y. K. Oh, and S. Park (2004), Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis, Enzyme Microb. Technol. 35, 624-631   DOI   ScienceOn
28 Monterde, M. I., M. Lombard, A. Archelasa, A. Croninb, M. Arandb, and R. Furstoss (2004), Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase, Tetrahedron: Asymmetry 15, 2801-2805   DOI   ScienceOn