• Title/Summary/Keyword: emulsion rheology

Search Result 32, Processing Time 0.023 seconds

Studies on Rheological Properties of High Solids Coating Colors (I) - Effect of Rheology Modifiers on Viscoelastic Properties -

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.39-45
    • /
    • 2012
  • For a fundamental study for high concentration pigment coating, the effects of alkali swellable emulsion (ASE) type rheology modifier and surface adsorption emulsion (SAE) type rheology modifier on both the stability and the viscoelastic behavior of a coating color were elucidated. The coating color prepared with SAE type rheology modifier showed superior thermal and mechanical stability than that with ASE type. In the high concentration and high speed coating process, the mechanical stability of a coating color was a key parameter since both impact force and shear force were increased with the increase of coating color concentration and coating speed, respectively.

Studies on Rheological Properties of High Solid Coating Colors(Part 2) - Effect of Rheology Modifiers on High-Shear Viscosity and Dynamic Penetration Behavior - (고농도 도공액의 유동특성에 관한 연구(제2보) - 유동성 조절제가 고전단 점도 및 동적 침투특성에 미치는 영향 -)

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.121-127
    • /
    • 2011
  • This study used two types of rheology modifiers including an alkali-swellable emulsion (ASE) and an surface-adhesion emulsion (SAE) to elucidate their effects on high shear viscosity and dynamic penetration behavior among the flow properties of high solids coating. Since rheology under high shear and dynamic penetration behavior significantly affect the quality of coated paper in case of high solids coating, it is very important to examine the variations in rheology of high solids coating color by rheology modifier. It was found that the high solids coating color prepared with the SAE type showed superior dynamic penetration behavior and high shear viscosity than that with the ASE type rheology modifier.

Droplet deformability and emulsion rheology: steady and dynamic behavior

  • Saiki Yasushi;Prestidge Clive A.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.191-198
    • /
    • 2005
  • The static and dynamic rheological behavior of concentrated sodium dodecylsulfate (SDS) stabilized, deformability controllable polydimethylsiloxane (PDMS) emulsions is reported and comparisons made with silica (hard sphere) suspensions. Steady-mode measurements indicate 'hard' (viscoelastic) droplets behave as hard spheres, while 'soft' (viscous) droplets induce structural flexibility of the emulsion against shear. Dynamic-mode measurements reveal that viscoelasticity of droplets provides the great magnitude of elasticity for the 'hard' emulsion, while formation of planar films between droplets is the origin of the elasticity of 'soft' emulsions. Combination of steady and dynamic rheological behavior has enabled depiction of droplet structure evolution in relation to the shear stress applied, especially by taking advantage of the normal force that reflects the transient deformation of droplets.

Emulsion rheology and properties of polymerized high internal phase emulsions

  • Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.183-189
    • /
    • 2006
  • High internal phase emulsions are highly concentrated emulsion systems consisting of a large volume of dispersed phase above 0.74. The rheological properties of high internal phase water-in-oil emulsions were measured conducting steady shear, oscillatory shear and creep/recovery experiments. It was found that the yield stress is inversely proportional to the drop size with the exponent of values between 1 and 2. Since the oil phase contains monomeric species, microcellular foams can easily be prepared from high internal phase emulsions. In this study, the microcellular foams combining a couple of thickeners into the conventional formulation of styrene and water system were investigated to understand the effect of viscosity ratio on cell size. Cell size variation on thickener concentration could be explained by a dimensional analysis between the capillary number and the viscosity ratio. Compression properties of foam are important end use properties in many practical applications. Crush strength and Young's modulus of microcellular foams polymerized from high internal phase emulsions were measured and compared from compression tests. Of the foams tested in this study, the foam prepared from the organoclay having reactive group as an oil phase thickener showed outstanding compression properties.

Rheology of Decamethylceclopentasiloxane (cyclomethicone) W/O Emulsion System

  • Choi, Min-Hyung;Jeong, So-Ra;Nam, Sang-In;Shim, Sang-Eun;Chang, Yoon-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.943-949
    • /
    • 2009
  • A highly dispersed W/O emulsion of silicone oil (cyclomethicone)/water system was prepared with a nonionic surfactant. The surface and interfacial tension between the oil and water were characterized in terms of the droplet size distribution and viscosity change of the emulsion. When the dispersed phase concentration was relatively high, the viscosity of the emulsion was rapidly increased and the droplet size of the emulsion was decreased. The rheological behavior of the emulsion system showed non-Newtonian and shear thinning phenomena depending upon the content of the dispersed phase. The droplet size of the emulsion was decreased with increasing surfactant content and water concentration. The relative viscosity of the emulsion was better predicted with the Choi-Schowalter model than with the Taylor model. The value of the complex modulus increased with increasing surfactant concentration. The linear viscoelastic region was expanded with a dispersed phase concentration. According to the change in the viscosity, the behavior was classified into three distinct regions: [I] linear viscoelastic, [II] partially viscoelastic, and [III] viscous. The creep/recovery behaviors in each region were characterized.

Evaluation of interfacial tension for poly(methyl methacrylate) and polystyrene by rheological measurements and interaction parameter of the two polymers

  • Sung, Y.T.;Seo, W.J.;Kim, Y.H.;Lee, H.S.;Kim, W.N.
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.135-140
    • /
    • 2004
  • Morphological and rheological properties of the poly(methyl methacrylate) (PMMA) and polystyrene (PS) blends were studied by scanning electron microscopy (SEM) and advanced rheometric expansion system (ARES). From the SEM results, the PMMA-PS blends showed dispersed morphology and the particle size of the dispersed phase was quite small (0.1~0.6 $\mu\textrm{m}$ compared with other immiscible polymer blends. Values of the interfacial tension of the PMMA-PS blend were obtained from the Choi-Schowalter and the Palierne emulsion models using the storage modulus of the PMMA and PS, and found to be 1.0 and 2.0 mN/m, respectively. The interfacial tension between the PMMA and PS was also calculated from the Flory-Huggins polymer-polymer interaction parameter ($\chi$) and found to be from 0.98 to 1.86 mN/m depending on the molecular weight and composition. Comparing the values of the interfacial tension from the Flory-Huggins polymer-polymer interaction parameter and the values measured by oscillatory rheometer, it is suggested that the interfacial tension of the PMMA-PS blend obtained from the polymer-polymer interaction parameter are in good agreement with the values obtained by rheological measurements.

Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions

  • Park, Chan-Ik;Cho, Wan-Gu;Lee, Seong-Jae
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The emulsion stability of cosmetic creams based on the water-in-oil (W/O) high internal phase emulsions (HIPEs) containing water, squalane oil and cetyl dimethicone copolyol was investigated with various compositional changes, such as electrolyte concentration, oil polarity and water phase volume fraction. The rheological consistency was mainly destroyed by the coalescence of the deformed water droplets. The slope change of complex modulus versus water phase volume fraction monitored in the linear viscoelastic region could be explained with the resistance to coalescence of the deformed interfacial film of water droplets in concentrated W/O emulsions: the greater the increase of complex modulus was, the more the coalescence occurred and the less consistent the emulsions were. Emulsion stability was dependent on the addition of electrolyte to the water phase. Increasing the electrolyte concentration increased the refractive index of the water phase, and thus decreased the refractive index difference between oil and water phases. This decreased the attractive force between water droplets, which resulted in reducing the coalescence of droplets and increasing the stability of emulsions. Increasing the oil polarity tended to increase emulsion consistency, but did not show clear difference in cream hardness among the emulsions.

Effect of rheological properties on chemical absorption of carbon dioxide with MEA

  • Park, Sang-Wook;Kim, Tae-Young;Park, Byoung-Sik;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Rates of chemical absorption of $CO_2$ in water-in-oil (w/o) emulsion were measured in a flat-stirred vessel at $25^{\circ}C$. The w/o emulsion was composed of aqueous monoethanolamine (MEA) droplets as a dispersed phase and non-Newtonian viscoelastic benzene solutions of polybutene (PB) and polyisobutylene (PIB) as a continuous phase. The liquid-side-mass transfer coefficient ($k_L$) was obtained from the dimensionless empirical equation containing Deborah number expressed as the properties of pseudoplasticity of the non-Newtonian liquid. $k_L$ was used to estimate the enhancement factor due to chemical reaction between $CO_2$ and MEA in the aqueous phase. PIB with elastic property of non-Newtonian liquid made the rate of chemical absorption of $CO_2$ accelerate compared with Newtonian liquid.

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

Effect of nonionic surfactants on the electrorheology of emulsions

  • Ha, Jong-Wook;Moon, Jung-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.241-246
    • /
    • 1999
  • In this study, we consider the effect of nonionic surfactants on the rheological responses of emulsion systems under the action of a uniform do electric field. The model emulsions consist of a less conducting dispersed phase and a more conducting continuous phase. When the shear flow is weak, the positive viscosity effect is produced due to the formation of chain-like morphology. The nonionic surfactants used here generate two distinctively different effects. Specifically, first, the steric hindrance induced by the surfactant molecules renders the structure unstable, and thereby reduces the degree of positive viscosity effect. Secondly, the presence of surfactant molecules also prevents the rotation of the dispersed droplets by anchoring across the interface or by decreasing the size of dispersed phase. The second effect suppresses the negative viscosity effect.

  • PDF