• 제목/요약/키워드: emulsification activity

검색결과 58건 처리시간 0.025초

Development of W/O/W Multiple Emulsion Formulation Containing Burkholderia gladioli

  • KIM, HWA-JIN;CHO, YOUNG-HEE;BAE, EUN-KYUNG;SHIN, TAEK-SU;CHOI, SUNG-WON;CHOI, KEE-HYUN;PARK, JI-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.29-34
    • /
    • 2005
  • W/O/W (water-in-oil-in-water) type multiple emulsion was applied to improve the storage stability of an antagonistic microorganism, Burkholderia gladioli. Encapsulation of microorganism into a W/O/W emulsion was conducted by using a two-step emulsification method. W/O/W emulsion was prepared by the incorporation of B. gladioli into rapeseed oil and the addition of polyglycerin polyriconolate (PGPR) and castor oil polyoxyethylene (COG 25) as the primary and secondary emulsifier, respectively. Microcrystalline cellulose was used as an emulsion stabilizer. To evaluate the usefulness of W/O/W emulsion formulation as a microbial pesticide for controlling the bacterial wilt pathogen (Ralstonia solanacearum), the storage stability and antagonistic activity of emulsion formulation were tested in vitro. The storage stability test revealed that the viability of formulated cells in emulsion was higher than that of unformulated cells in culture broth. At $4^{\circ}C$, the viabilities of formulated cells and unformulated cells at the end of 20 weeks decreased to about 2 and 5 log cycles, respectively. At $37^{\circ}C$, the viability of formulated cells decreased to only 2 log cycles at the end of storage. On the other hand, the viable cells in culture broth were not detected after 13 weeks. In activity test, formulated cells in emulsion were more effective in inhibiting the growth of pathogen than unformulated cells in culture broth. Unformulated cells completely lost their antagonistic activity during storage under similar conditions. The W/O/W multiple emulsion formulation was shown to be useful as the novel liquid formulation for biological control.

라벤더와 로즈마리 에센셜 오일 나노에멀션의 항균 활성 (Antimicrobial Activity of Lavander and Rosemary Essential Oil Nanoemulsions)

  • 김민수;이경원;박은진
    • 한국식품조리과학회지
    • /
    • 제33권3호
    • /
    • pp.256-263
    • /
    • 2017
  • Purpose: Essential oils are secondary metabolites of herbs and have antibacterial activities against foodborne pathogens. However, their applications for food protection are limited due to the hydrophobic and volatile natures of essential oils. Methods: In this study, essential oil nanoemulsions of rosemary and lavender were formulated with non-ionic surfactant Tween 80 and water using ultrasonic emulsification, and their antibacterial effects were determined. Results: The antibacterial activities of nanoemulsions were evaluated against 12 strains of 10 bacterial species, and significant antibacterial effects were observed against four Gram-positive and four Gram-negative bacteria but not against Streptococcus mutans and Shigella sonnei. In the disc diffusion test, the diameter of the inhibition zone proportionally increased with the concentration of nanoemulsions. Using cell turbidity measurement, minimum bactericidal concentration (MBC) of the nanoemulsions, which is the lowest concentration reducing viability of the initial bacterial inoculum by ${\geq}99.9%$, was significantly higher than the minimum inhibitory concentration (MIC) of the nanoemulsions. The largest bactericidal effects of lavender and rosemary essential oil nanoemulsions were observed against S. enterica and S. aureus, respectively. Conclusion: Nanoemulsion technique could improve antibacterial activity of essential oil nanoemulsions by increasing the solubility and stability of essential oils. Our findings shed light on the potential use of essential oil nanoemulsions as an alternative to chemical sanitizers in food protection.

Enzymatic hydrolyzation of Cordyceps militaris mushroom extracts and its effect on spent hen chicken

  • Farouq Heidar Barido;Puruhita;Bayu Setya Hertanto;Muhammad Cahyadi;Lilik Retna Kartikasari;Joko Sujiwo;Juntae Kim;Hack-Youn Kim;Aera Jang;Sung Ki Lee
    • Animal Bioscience
    • /
    • 제37권7호
    • /
    • pp.1277-1288
    • /
    • 2024
  • Objective: This study was aimed to investigate the effect of fresh and dried hydrolyzed Cordyceps militaris (CM) mushroom with proteolytic enzymes; bromelain (CMB), flavorzyme (CMF), and mixture of bromelain: flavorzyme (CMBF) on quality properties of spent hen chicken. Methods: Mushroom extract (CME) were combined with three proteolytic enzyme mixtures that had different peptidase activities; stem bromelain (CMB), flavorzyme (CMF), and mixture of stem bromelain:flavorzyme (CMBF) at (1:1). The effect of these hydrolysates was investigated on spent hen breast meat via dipping marination. Results: Hydrolyzation positively alters functional properties of CM protease. in which bromelain hydrolyzed group (CMB) displayed the highest proteolytic activity at 4.57 unit/mL. The antioxidant activity had a significant increment from 5.32% in CME to 61.79% in CMB. A significantly higher emulsion stability index and emulsification activity index compared to CME were another result from hydrolyzation (p<0.05). Texture properties along with the shear force value and myofibrillar fragmentation index were notably improved under CMB and CMBF in fresh condition. Marination with CM mushroom protease that was previously hydrolyzed with enzymes was proven to also increase the nucleotide compounds, indicated by higher adenosine 5'-monophosphate (AMP) and inosine 5'-monophosphate (IMP) in hydrolysate groups (p<0.05). The concentration of both total and insoluble collagen remained unchanged, meaning less effect from CM protease. Conclusion: This study suggested the hydrolyzation of CM protease with bromelain or a mixture of bromelain:flavourzyme to significantly improve functional properties of protease and escalate the taste-related nucleotide compounds and texture profiles from spent hen breast meat.

Effect of NaCl, Gum Arabic and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar Proteins

  • Davaatseren, Munkhtugs;Hong, Geun-Pyo
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.808-814
    • /
    • 2014
  • This study investigated the effect of gum arabic (GA) combined with microbial transglutaminase (TG) on the functional properties of porcine myofibrillar protein (MP). As an indicator of functional property, heat-set gel and emulsion characteristics of MP treated with GA and/or TG were explored under varying NaCl concentrations (0.1-0.6 M). The GA improved thermal gelling ability of MP during thermal processing and after cooling, and concomitantly added TG assisted the formation of viscoelastic MP gel formation. Meanwhile, the addition of GA decreased cooking yield of MP gel at 0.6 M NaCl concentration, and the yield was further decreased by TG addition, mainly attributed by enhancement of protein-protein interactions. Emulsion characteristics indicated that GA had emulsifying ability and the addition of GA increased the emulsification activity index (EAI) of MP-stabilized emulsion. However, GA showed a negative effect on emulsion stability, particularly great drop in the emulsion stability index (ESI) was found in GA treatment at 0.6 M NaCl. Consequently, the results indicated that GA had a potential advantage to form a viscoelastic MP gel. For the practical aspect, the application of GA in meat processing had to be limited to the purposes of texture enhancer such as restructured products, but not low-salt products and emulsion-type meat products.

Characterization of a Blend-Biosurfactant of Glycolipid and Lipopeptide Produced by Bacillus subtilis TU2 Isolated from Underground Oil-Extraction Wastewater

  • Cheng, Fangyu;Tang, Cheng;Yang, Huan;Yu, Huimin;Chen, Yu;Shen, Zhongyao
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.390-396
    • /
    • 2013
  • Biosurfactants have versatile properties and potential industrial applications. A new producer, B. subtilis TU2, was isolated from the underground oil-extraction wastewater of Shengli Oilfield, China. Preliminary flask culture showed that the titer of biosurfactant obtained from the broth of TU2 was ~1.5 g/l at 48 h (718 mg/l after purification), with a reduced surface tension of 32.5 mN/m. The critical micelle concentration was measured as 50 mg/l and the surface tension maintained stability in solution with 50 g/l NaCl and 16 g/l $CaCl_2$ after 5 days of incubation at $70^{\circ}C$. FT-IR spectra exhibited the structure information of both glycolipid and lipopeptide. MALDI-TOF-MS analyses confirmed that the biosurfactant produced by B. subtilis TU2 was a blend of glycolipid and lipopeptide, including rhamnolipid, surfactin, and fengycin. The blended biosurfactant showed 86% of oil-washing efficiency and fine emulsification activity on crude oil, suggesting its potential application in enhanced oil recovery.

동결건조한 두유 분말의 품질 특성 (Quality Characteristics of Freeze-Dried Soymilk Powder)

  • 김용선
    • 한국식품영양학회지
    • /
    • 제27권1호
    • /
    • pp.89-98
    • /
    • 2014
  • In this study, soybean is used to produce soymilk according to various extracting methods and heating time. Specifically, the soy slurry is being filtered before being heated, or heated before being filtered. Following that the soymilk produced is freeze-dried to be powdered, and then, the quality characteristics of the powdered soymilk are mutually compared to determine the applicability of various food additives. The freeze-dried soymilk powder shows 2.03~6.35% of moisture content, and in terms of unit quantity, retained more proteins, which suggests that the ratio of protein extraction is higher than any other nutrients. Accordingly, the protein coefficient is significantly higher in soymilk powder being heated and processed than in raw soybeans. In particular, protein coefficient is the highest in the soymilk which is heated for 20 minutes before being filtered (SHBF20). The longer the heating time was, the trypsin inhibitor (TI) tended to be far less active. Such an inactivation seems to be more apparent in the "SHAF" soymilk powder than "SHBF" soymilk powder. Because protein had to be denaturated by heating for soymilk, the nitrogen solubility index (NSI) of soymilk powder is decreased considerably, while the protein digestibility, water absorption, emulsification and foaming activity all increase. Oil absorption tends to decrease slightly. As discussed above, the soymilk heated for 10 minutes after being filtered (SHAF10) and the soymilk heated for 20 minutes before being filtered (SHBF20) show optimum processing conditions for soymilk powder.

BMP-2를 함유한 2상 알지네이트 담체를 이용한 골수줄기세포의 골분화 (Osteogenic Differentiation of Bone Marrow Stem Cell using Bi-phase Alginate Scaffold Including BMP-2)

  • 임현주;김학태;오은정;김태정;김한도;최진현;정호윤
    • Archives of Plastic Surgery
    • /
    • 제37권3호
    • /
    • pp.207-212
    • /
    • 2010
  • Purpose: The object of this study is to develop a novel BMP-2 delivery system for continuous osteogenic differentiation and to induce osteogenesis of stem cells using a bi-phase alginate carrier in vitro. Methods: Alginate nanoparticle loaded BMP-2 was prepared by the reverse emulsification-diffusion technique. Physical properties and release profiles of alginate carriers were measured by Instron and ELISA kit, respectively. Cell viability and alkaline phosphate activity of hBMSCs differentiation was also evaluated by MTS and Metra BAP assays, respectively. Results: Optimal concentration for bi-phase alginate carrier was determined as 2 wt% by evaluating mechanical and biological properties, and differentiation of BMSCs for bone regeneration. The 2% bi-phase alginate carrier had the lowest initial and final release ratio. In addition, the 2% bi-phase alginate carrier had a little higher ALP activity than the homogeneous carrier. An improved controlled release profile was obtained by combining alginate hydrogel with lyophilized particles. Conclusion: Bi-phase alginate carrier has many advantages such as biocompatibility and controlled release capability. It is expected to be effective as a scaffold and carrier in bone tissue engineering.

숙시닐화 및 부분가수분해가 대두단백질 분리물의 기능적 특성과 단백질-단백질 상호작용에 미치는 영향 (Effects of Succinylation and Partial Proteolysis of Soybean Protein Isolates on Functional Properties and Protein-Protein Interaction)

  • 이지원;하정욱
    • 한국식품영양과학회지
    • /
    • 제18권4호
    • /
    • pp.410-422
    • /
    • 1989
  • 숙시닐화 또는 트립신처리에 의한 대두단백질분리물의 화학적 변형은 단백질의 함량을 감소시키는 것으로 나타났고, 아미노산 조성에서 tyrosine의 증가가 현저하였으나 lysine은 트립신처리시에만 크게 증가하였다. 화학적 변형은 단백질의 용해성을 증가시키고 pH의존성이 뚜렷하여 등전점 변이시키는 효과를 나타내었다. 단백질의 용해성은 염류의 농도증가에 의해 감소하는 경향을 나타내었으며, 화학적 변형은 유흡수성과 수분흡수성, 유화특성 및 기포성 등을 증가시키는 반면에 기포안정성을 다소 저하시키고 자외선흡광도와 용적밀도를 감소시켰다. 한편 대두단백질 분리물과 우육단백질의 혼합에 따른 상호작용에 의해서는 유화활성, 유화활성지수 및 기포성의 증가를 가져봤으나 유화안정성에 대해서는 현저한 효과가 나타나지 않았다.

  • PDF

세제용 고기능성 계면활성제의 개발 및 응용 동향 (Trend on Development and Application of High Performance Surfactants for Detergents)

  • 랑문정
    • 공업화학
    • /
    • 제20권2호
    • /
    • pp.126-133
    • /
    • 2009
  • 가정용 및 산업용 세정제품에 주성분으로 사용되고 있는 계면활성제는 유화, 가용화, 분산, 세정, 습윤, 기포 등의 기본기능뿐만 아니라 경제성, 인체 및 환경 안전성의 요건을 충족해야 하며, 최근에는 지속가능발전이라는 관점에서 계면활성제의 제조 및 사용환경조건에서 원료자원, 에너지, 폐기물을 가능한 절약하여야 한다. 이러한 사회적 경제적 환경변화에 부응하기 위하여 새로운 고기능 계면활성제 개발이 활발하게 이루어지고 있으며, 현재까지 기존 계면활성제의 분자 구조 조정에 의한 용해성 및 계면활성 증가 그리고 혼합 계면활성제 시스템에 의한 계면활성 상승작용에서 괄목할 만한 성과가 이루어 졌다. 본 총설에서는 최근에 도출된 다양한 연구개발 결과 중 기술적 발전 및 산업화 응용측면에서 의미가 있는 고기능 계면활성제들의 개발 및 응용현황에 대하여 논의한다.

Biosurfactant 생산균주 Bacillus sp. TBM 911-5의 분리 및 특성 (Isolation and Characteristics of Biosurfactant Producing Bacterium, Bacillus sp. TBM 911-5)

  • 김선희;정연주;이상철;유주순;주우홍;정수열;최시림;최용락
    • 생명과학회지
    • /
    • 제14권2호
    • /
    • pp.320-324
    • /
    • 2004
  • 본 연구는 biosurfactant를 생산하는 우수한 균주를 얻고자 산지 토양에서 생산능이 우수한 균주 수십 종을 분리하였다. 분리된 균주 중 원유분해능 및 biosurfactant 생성능이 우수한 균주를 선별하여, 형태학적 특성 및 생리 화학적 특성을 조사고, 16S rDNA의 부분적 염기서열 결정을 통하여 Bacillus sp. TBM911-5로 동정하였다. 동정된 균주 배양액에 생산된 biosurfactant에 의해 48시산 정도에서 표면장력이 최저 29mN/m까지 감소되었다. Bacillus sp. TBM 911-5가 생산하는 biosurfactant의 유화활성은 대두유를 기질로 사용하였을 때 최대였으며, 원유에서도 높은 편이였다. 유화안정성은 합성 계면활성제의 Tween 류나 Triton X-100등과 비슷하거나 우수하였으며, 이는 분리된 균이 생산하는 biosurfactant의 계면활성제로서의 산업적 이용 가능성을 보여준다.