• Title/Summary/Keyword: empirical orthogonal function

Search Result 69, Processing Time 0.027 seconds

Empirical Orthogonal Function Analysis on the Monthly Variation of Flow Pattern in the East Sea of Kore (경험적 고유함수법에 의한 한국동해 해황변동해석)

  • CHANG Sun-Duck;LEE Jong-Sup;SUH Jong-Moon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.323-330
    • /
    • 1988
  • The spatial distribution of sea water temperature variation pattern in the South-eastern coastal region of Korea was studied by empirical orthogonal function (E. O. F) analysis in several depths from surface to 300m using the monthly mean water temperature averaged for 23 years, water mass analysis by T. S diagram and sectional diagram of water temperature. Typical type of water temperature variation in this area can be divided into surface (0m-50m), subsurface (100m-150m) and intermediate (200m-300m) layer. The first mode value of water temperature change on the surface layer showed $99\%$ of total variation, and decreased with the increase of the depth. It is deduced to be in the range of $60-70\%$ on the 300m layer. The representative type of water temperature fluctuation by the first mode in each layer is as follows. Water temperature change in the surface layer showed a seasonal variation. In the subsurface layer, it is governed by the interaction of the Tsushima Warm Current water with the cold water and by the heat transfer process from the upper layer. In the intermediate layer, water temperature variation seems to be governed by the advection of the bottom cold water.

  • PDF

Variability and Horizontal Structure of Sea Surface Height Anomaly Estimated from Topex/poseidon Altimeter in the East (Japan) Sea (동해의 Topex/Poseidon 고도계로부터 추정된 해면고도이상치의 수평구조와 변동성)

  • Kim, Eung;Ro, Young-Jae;Kim, Chang-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.94-110
    • /
    • 2003
  • This study utilizes the dataset of Topex/Poseidon(T/P) altimeter sea surface height (1992-2000 yr., 286 cycles)to investigate the tempore-spatial variability in the East (Japan) Sea. Optimal interpolation (Ol) technique was applied to the pre-processed T/P dataset (level 2) to produce sea surface height anomaly (SSHA) map on regular grids. Spectral analyses of the timeseries of the SSHA at chosen stations and empirical orthogonal function (EOF) analysis of the SSHA in the entire East Sea were made. Distribution of the SSHA can be divided by the southern and northern regions sharply by the polar front situated in the middle of the East Sea. The southern region under the direct influence of the Tsushima Current exhibits higher amplitude of the SSHA fluctuation, while the northern region does relatively smaller one. The spatio-temporal variability of the SSHA in the East Sea can be characterized by the five modes of the EOFs accounting for more than 85% of the total variance. The first mode dominates the SSHA variation in the entire domain with strong seasonal and inter-annual periods accounting for the 72.3% of the total variance. The other modes (up to 5th account for 14%) are responsible for the SSHA variation associated with the local current system, meandering of the polar frontal axis, and mesoscale eddies. Spectral peaks with significant confluence level show semi-annual, annual and interannual (2, 3-4 years) periods.

Spatial and Temporal Variations of Satellite-derived 10-year Surface Particulate Organic Carbon (POC) in the East China Sea (동중국해에서 위성에서 추정된 10년 동안의 표층 입자성 유기 탄소의 시/공간적 변화)

  • Son, Young-Baek;Lee, Tae-Hee;Choi, Dong-Lim;Jang, Sung-Tae;Kim, Cheol-Ho;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kim, Moon-Koo;Jung, Seom-Kyu;Ishizaka, Joji
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.421-437
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data is used to determine spatial and temporal variations of the Changjiang Diluted Water (CDW) in the East China Sea. 10-year monthly POC concentrations (1997-2007) show clearly seasonal variations. Inter-annual variation of POC in whole and three different areas separated by standard deviation is not linearly correlated with the Changjiang River discharge that has decreased after 1998. To determine more detailed spatial and temporal POC variations, we used empirical orthogonal function (EOF) analysis in summer (Jun.-Sep.) from 2000 to 2007. First mode is spatially and temporally correlated with the area influenced by the Changjiang River discharge. Second mode is temporally less sensitive with the Changjiang River discharge but spatially correlated with north-south patterns. Relatively higher POC variations during 2000 and 2003 were shown in the southern East China Sea. These patterns during 2004 and 2007 moved to the northern East China Sea. This phenomenon is better related to spatial variations of wind-direction than the amount of Changjiang River discharge, which is verified from in-situ measurement.

Spatial Similarity between the Changjiang Diluted Water and Marine Heatwaves in the East China Sea during Summer (여름철 양자강 희석수 공간 분포와 동중국해 해양열파의 공간적 유사성에 관한 연구)

  • YONG-JIN TAK;YANG-KI CHO;HAJOON SONG;SEUNG-HWA CHAE;YONG-YUB KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.121-132
    • /
    • 2023
  • Marine heatwaves (MHWs), referring to anomalously high sea surface temperatures, have drawn significant attention from marine scientists due to their broad impacts on the surface marine ecosystem, fisheries, weather patterns, and various human activities. In this study, we examined the impact of the distribution of Changjiang diluted water (CDW), a significant factor causing oceanic property changes in the East China Sea (ECS) during the summer, on MHWs. The surface salinity distribution in the ECS indicates that from June to August, the eastern extension of the CDW influences areas as far as Jeju Island and the Korea Strait. In September, however, the CDW tends to reside in the Changjiang estuary. Through the Empirical Orthogonal Function analysis of the cumulative intensity of MHWs during the summer, we extracted the loading vector of the first mode and its principal component time series to conduct a correlation analysis with the distribution of the CDW. The results revealed a strong negative spatial correlation between areas of the CDW and regions with high cumulative intensity of MHWs, indicating that the reinforcement of stratification due to low-salinity water can increase the intensity and duration of MHWs. This study suggests that the CDW may still influence the spatial distribution of MHWs in the region, highlighting the importance of oceanic environmental factors in the occurrence of MHWs in the waters surrounding the Korean Peninsula.

Empirical Orthogonal Function Analysis of Surface Pressure, Sea Surface Temperature and Winds over the East Sea of the Korea (Japan Sea) (한국 동해에서의 해면기압, 해수면온도와 해상풍의 경험적 직교함수 분석)

  • NA Jung-Yul;HAN Snag-Kyu;SEO Jang-Won;NOH Yi-Gn;KANG In-Sik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.188-202
    • /
    • 1997
  • The seasonal variability of the sea surface winds over the last Sea of Korea (Japan Sea) is investigated by means of empirical orthogonal function (EOF) analysis. The combined representation of fields of three climatic variables by empirical orthogonal functions is discussed. The eigenvectors are derived from daily sea level pressure, wind speed and 10-day mean sea surface temperature (SST) during 15 years $(1978\~1992)$. The spatial patterns of the mean pressure are characterized by the high pressure in the western part and the low pressure in the eastern part. The spatial distribution of the standard deviation (SD) of pressure are characterized by max SD of 6.6 mb near the Vladivostok, and minima along the coast of the Japan. In Vladivostok, the maxima of SD of SST and south-north wind (WV) were also occurred. The representation of fields of individual meteorological variables by EOF shows that the first mode of the west-east wind (WU) explain over $47.3\%$ of the variance and the second mode of WU represents $30\%$. Especially, the first mode of the WV explain $70.9\%$ of the variance and their time series coefficients show 1-cpy, 0.5-cpy frequency spectrum. The spatial distribution of the first mode eigenvectors of SST are characterized by maximum near Vladivostok. The combined representation of fields of several variables (pressure, wind, SST) reveals that the first mode magnitudes of the variance of the combined eigenvectors (WU-PR) are increased. By means of this result, the 1-year peak and the 6-months peak are remarkable. In the three combined patterns (wind, pressure, SST), the second mode of the eigenvector (wind) is affected by the SST. Their time coefficients of the first mode show noticeable 1-year peak. The spectral analysis of the second mode shows broad seasonal signal with the period of 4-months and a significant peak of variability at 3-month period.

  • PDF

A Statistically Downscaling for Projecting Climate Change Scenarios over the Korean Peninsula (한반도지역에 대한 미래 기후변화 시나리오의 통계적 상세화)

  • Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae;Kim, Min-Ji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1191-1196
    • /
    • 2009
  • 온실가스 증가에 따른 미래 기후변화가 수자원에 미치는 영향을 평가하기 위하여 전구기후모델(AOGCM)의 기온과 강수 자료를 이용하여 한반도 지역에 대한 통계적 규모 상세화(statistical downsacaling, SDS) 기법을 개발하였다. 개발된 기법은 Cyclostationary Empirical Orthogonal Function (CSEOF) 분석과 회귀분석을 결합한 것으로 관측과 AOGCM 시계열의 통계적 상관성을 이용하고 있다. 20세기말(1973-2000) 동안의 광역규모의 기온(ECMWF)과 강수량(CMAP) 및 AOGCM의 기온과 강수량 자료에 통계적 상세화 기법을 적용하고 비교함으로써 이 기법의 유효성을 검증하였는데, 상세화된 기온과 강수량 자료는 관측된 계절변동성과 월변동성을 잘 모사하였다. 특히, 여름철 관측에 비해 저평가된 AOGCM의 강수량 크기와 변동성이 상세화를 통해 관측치에 근접하게 되었다. AOGCM의 미래 강수량 변화는 21세기 후반에 계절적으로 봄과 여름에 증가할 것을 예상되었다. 상세화된 AOGCM의 강수는 겨울을 제외한 모든 계절에서, 특히 여름철에 가장 많이 증가할 것으로 전망되었다. AOGCM의 미래 기온변화는 21세기 후반으로 갈수록 상승하며, 계절적으로 겨울철의 기온 상승폭이 더 클 것으로 전망되는데, AOGCM을 상세화한 결과에서는 겨울과 더불어 여름에도 기온 상승폭이 클 것으로 전망되었다. 개발된 기법은 역학적 결과와 관측과의 통계적 상관성을 이용하기 때문에 광역규모의 기후적 특성뿐만 아니라 한반도 지형 등 지역적 특성도 모두 반영함과 더불어 광역규모의 자료를 빠른 시간내에 효과적으로 상세화시킬 수 있는 장점도 지닌다. 한편 상세화에 사용된 CSEOF의 모드수 등에 따른 불확실성 등은 통계적 상세화 과정에 개선될 여지가 남아있음을 보여준다.

  • PDF

Analysis of Characteristics of Air Pollution Over Asia with Satellite-derived $NO_2$ and HCHO using Statistical Methods (환경 위성관측자료의 통계분석을 통한 동아시아 대기오염특성 연구)

  • Baek, K.H.;Kim, Jae Hwan
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.495-503
    • /
    • 2010
  • Satellite data have an intrinsic problem due to a number of various physical parameters, which can have a similar effect on measured radiance. Most evaluations of satellite performance have relied on comparisons with limited spatial and temporal resolution of ground-based measurements such as soundings and in-situ measurements. In order to overcome this problem, a new way of satellite data evaluation is suggested with statistical tools such as empirical orthogonal function(EOF), and singular value decomposition(SVD). The EOF analyses with OMI and OMI HCHO over northeast Asia show that the spatial pattern show high correlation with population density. This suggests that human activity is a major source of as well as HCHO over this region. However, this analysis is contradictory to the previous finding with GOME HCHO that biogenic activity is the main driving mechanism(Fu et al., 2007). To verify the source of HCHO over this region, we performed the EOF analyses with vegetation and HCHO distribution. The results showed no coherence in the spatial and temporal pattern between two factors. Rather, the additional SVD analysis between $NO_2$ and HCHO shows consistency in spatial and temporal coherence. This outcome suggests that the anthropogenic emission is the main source of HCHO over the region. We speculate that the previous study appears to be due to low temporal and spatial resolution of GOME measurements or uncertainty in model input data.

The Analysis of Changma Structure Using Radiosonde Observational Data from KEOP-2007: Part II. The Dynamic and Thermodynamic Characteristics of Changma in 2007 (KEOP-2007 라디오존데 관측자료를 이용한 장마 특성 분석 : Part Ⅱ. 2007년 장마의 역학적 및 열역학적 특성에 관한 사례연구)

  • Kim, Ki-Hoon;Kim, Yeon-Hee;Jang, Dong-Eon
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.297-307
    • /
    • 2009
  • The synoptic structures and the dynamic and thermodynamic characteristics of Changma in 2007 are investigated using the ECMWF analysis data and the radiosonde data from KEOP-2007 IOP. The enhancement of the North-Pacific High into the Korean peninsula and the retreat of the Okhotsk High are shown during the onset of Changma and the change of wind component from southwesterly to northwesterly is appeared during the end of Changma. The baroclinic atmosphere is dominant during Changma at most regions over the Korean peninsula except at Gosan and Sokcho. The quasi-barotropic atmosphere is induced at Gosan by warm air mass and Sokcho by cold air mass. Precipitation in the Korean peninsula occurs when dynamic instability is strengthened as the baroclinic and qusi-barotropic structure is weakened. An empirical orthogonal function (EOF) analysis is performed to find the dominant modes of variability in Changma. The first EOF explains the onset of Changma. The second EOF is related to the discrimination for existence and nonexistence of precipitation during Changma period according to the alternation of equivalent potential temperature between middle and lower atmosphere.

The Typhoon Surges in the Southern Coast of Korea by Typhoon Brenda (태풍 Brenda에 의한 한국 남해안의 해일)

  • LEE In-Cheol;KIM Jong-Kyu;CHANG Sun-duck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 1994
  • The storm surges caused by the typhoon Brenda in 1985 were studied by analysing tidal observation data at 7 stations along the south coast of the Korean peninsula. The tidal deviation at these stations along the coast are discussed in association with meteorological data. The sea level anomalies were studied by means of the Empirical Orthogonal Function (EOF) analysis and the Fast Fourier Transform(FFT) method. From the result of EOF analysis, the temporal and spatial variations of storm surge were described by the first mode of EOF, which is $73\%$ of the total variances during the passage of typhoon Brenda. From the results of FFT spectral analysis, the peak energy of the autospectrum for surge, atmospheric pressure, and wind stress appeared in the low frequency fluctuations band. The result of FFT analysis showed that the typhoon surge was related chiefly to the atmospheric pressure change in an open bay such as Cheju and Keomundo harbor, while it was influenced mainly by the wind stress in the semi-enclosed waters of Yeosu, Chungmu and Kadukdo.

  • PDF

Interannual Variations of the Precipitation in Korea and the Comparison with Those in China and Japan (한국 강수량의 연 변동과 중국 및 일본 강수량과의 비교 연구)

  • Jo, Wan-Kuen;Weisel, C.P.
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.345-356
    • /
    • 1995
  • Examining the precipitation data collected during the period from 1960 to 1993, we found that Taegu Station represents an optimum station for explaining the interannual variations of the precipitation in Korea. Using the variations derived from Taegu, the secular trends of the precipitation in Korea have been studied. It was 삽so found that the interannual variations of summer monsoon precipitation are consistent with those of the annual precipitation. To explore the interannual variations of the summer monsoon precipitation, comparisons of the summer precipitation in Korea with that in China and Japan were made. The results of the empirical orthogonal function analysis showed that Korea, the Yangtze River and Huaihe River valley, and the south Japan are all located in the same climate system during summer. The detailed analysis was carried out on the comparison of the summer precipitation in Korea with that in the eastern part of the the mainland China. We found that the correlation pattern is similar to the East Asia/pacific pattern. The probable effects of the sea surface temperature on the precipitation in Korea were also discussed. Key Words : Precipitation in Korea, rainy seasons in East Asia, monsoon precipitation, interannual variations.

  • PDF