• Title/Summary/Keyword: empirical formulas

Search Result 224, Processing Time 0.025 seconds

Evaluation and Adjustment of Dynamic Pile-Driving Formulas (말뚝 지지력 산정을 위한 동역학적 공식의 정확도 분석 및 수정)

  • Chung, Choong Ki;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.23-30
    • /
    • 1985
  • Dynamic pile-driving formulas are widely used in predicting the load capacity of piles in cohesionless soils. However, the accuracy of the formulas has been questioned for a long time due to their oversimplified assumptions and empirical parameters involved in the formulas. The allowable pile capacities calculated by 6 different dynamic pile-driving formulas are compared statistically with the capacities measured in the field, in this paper, to find out the correlations between the calculated capacities and the measured values. The statistical data are then used to evaluate and to adjust the formulas to improve their accuracy. For the greatest accuracy and simplicity of use, it is recommended that the adjusted form of Gates formula be used. When the result of this recommended formula is compared with that of the existing Olson's modified formula, the former is found to be conservative by more than 10 percents.

  • PDF

Ice Load Prediction Formulas for Icebreaking Cargo Vessels (쇄빙상선의 빙하중 추정식 고찰)

  • Choi, Kyung-Sik;Jeong, Seong-Yeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-185
    • /
    • 2008
  • One of the concerns that arise during navigation in ice-covered waters is the magnitude of ice loads encountered by ships. However, the accurate estimation of ice loads still remains as a rather difficult task in the design of icebreaking vessels. This paper focuses on the development of simple ice load prediction formulas for the icebreaking cargo vessels. The maximum ice loads are expected from unbroken ice sheet and these loads are most likely to be concentrated at the bow area. Published ice load data for icebreaking vessels, from the model tests and also from full-scale sea trials, are collected and then several ice load prediction formulas are compared with these data. Finally, based on collected data, a semi-empirical ice load prediction formula is recommended for the icebreaking cargo vessels.

Estimation of Head Loss Coefficient Empirical Formulas Using Model Experimental Results in a 90° Angle Dividing Channel Junction (90도 각도를 갖는 분기수로에서 모형실험결과를 이용한 손실계수 경험식 산정)

  • Park, Inhwan;Seong, Hoje;Kim, Hyung-Jun;Rhee, Dong Sop
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.989-999
    • /
    • 2017
  • In this study, hydraulic experimental studies were conducted to estimate the empirical formulas of loss coefficient, which is necessary to calculate the energy loss occurred in the dividing channel junction of sewer system. The experimental apparatus was consisted of two outflow conduit with a $90^{\circ}$ angle to the inlet conduit, and the pressure and velocity heads are measured to analyze the energy losses in the branch. The measurements of the hydraulic grade line show that the hydraulic grade line was steeply descended at the dividing point due to the head loss, and the decreasing amount of velocity head increased with the increase of flowrate ratio. The head loss exponentially increased in the outlet with larger runoff as the increase of flowrate ratio and Froude number, and the head loss coefficient also increased. On the other hands, the head loss coefficients decreased in the outlet with smaller runoff as the increase of the flowrate ratio and Froude number. Using the experimental results, the empirical formulas of loss coefficient was suggested for each outlet, and the error of empirical formula was 3.91 and 5.19%, respectively. Furthermore, the total head loss coefficient calculated by the two empirical formulas was compared with the experimental results, and the error was 3.62%.

A Study on the Predictions of Wave Breaker Index in a Gravel Beach Using Linear Machine Learning Model (선형기계학습모델을 이용한 자갈해빈상에서의 쇄파지표 예측)

  • Eul-Hyuk Ahn;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.2
    • /
    • pp.37-49
    • /
    • 2024
  • To date, numerous empirical formulas have been proposed through hydraulic model experiments to predict the wave breaker index, including wave height and depth of wave breaking, due to the inherent complexity of generation mechanisms. Unfortunately, research on the characteristics of wave breaking and the prediction of the wave breaker index for gravel beaches has been limited. This study aims to forecast the wave breaker index for gravel beaches using representative linear-based machine learning techniques known for their high predictive performance in regression or classification problems across various research fields. Initially, the applicability of existing empirical formulas for wave breaker indices to gravel seabeds was assessed. Various linear-based machine learning algorithms were then employed to build prediction models, aiming to overcome the limitations of existing empirical formulas in predicting wave breaker indices for gravel seabeds. Among the developed machine learning models, a new calculation formula for easily computable wave breaker indices based on the model was proposed, demonstrating high predictive performance for wave height and depth of wave breaking on gravel beaches. The study validated the predictive capabilities of the proposed wave breaker indices through hydraulic model experiments and compared them with existing empirical formulas. Despite its simplicity as a polynomial, the newly proposed empirical formula for wave breaking indices in this study exhibited exceptional predictive performance for gravel beaches.

Estimation of fundamental natural period of vibration for reinforced concrete shear walls systems

  • Shatnawi, Anis S.;Al-Beddawe, Esra'a H.;Musmar, Mazen A.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.295-310
    • /
    • 2019
  • This study attempts to develop new simplified approximate formulas to predict the fundamental natural periods of vibration (T) for bearing wall systems engaged with special reinforced concrete shear walls (RCSW) under seismic loads. Commonly, seismic codes suggested empirical formulas established by regression analysis of measured T for buildings during earthquake motions. These formulas depend on structure type, building height, number, height and length of SW, and ratio of SW area to base area of structure. In this study, a parametric investigation is performed for T of 110 selected models of bearing RCSW systems with varying structural height, configuration of horizontal plans including building width, number and width of bays, presence of middle corridors and core SWs. For this purpose, a 3D non-linear response time history (TH) analysis is implemented using ETABS v16.2.1. New formulas to estimate T are anticipated and compared with those obtained from formulas of IBC 2012 and ASCE/SEI 7-10. Moreover, the study examines responses of an arbitrarily two selected test model of 60 m and 80 m in height with presence of SWs having middle corridors. It is observed that the performance of the tested buildings is different through arising of considerable errors when using codes' formulas for estimating T. Accordingly, using the present proposed formulas exhibits more reasonable and safer design compared to codes' formulas. The results showed that equitable enhancement is promising to improve T formulas approaching enhanced and accurate estimation of T with reliable analysis, design, and evaluation of bearing RCSW systems.

Effects of Isolation Oxide Structure on Base-Collector Capacitance (소자격리구조가 바이폴라 트랜지스터의 콜렉터 전기용량에 주는 영향)

  • Hang Geun Jeong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.10
    • /
    • pp.20-26
    • /
    • 1993
  • The base-collector capacitance of an npn bipolar transistor in bipolar or BiCMOS technology has significant influence on the switching performances, and comprises pnjunction component and MOS component. Both components have complicated dependences on the isolation oxide structure, epitaxial doping density, and bias voltage. Analytical/empirical formulas for both components are derived in this paper for a generic isolation structure as a function of epitaxial doping density and bias voltage based on some theoretical understanding and two-dimensional device simulations. These formulas are useful in estimating the effect of device isoation schemes on the switching speed of bipolar transistors.

  • PDF

A Study on Insertion Loss Estimation Formulas of Rectangular Silencers for Ships (선박용 사각 소음기의 삽입손실 추정식 연구)

  • Kim, Tae-Gyoung;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Kong, Young-Mo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.820-826
    • /
    • 2016
  • The acoustic performance estimation formulas for silencers are developed mainly by theoretical or empirical methods. However, the existing formulas are available only for a limited range of silencers. In this paper, the procedures for noise analysis of the silencers are established by comparing analytic results to experimental results. With the proven analysis procedures, impedances of the rectangular silencers for ships are adversely predicted from National Environmental Balancing Bureau (NEBB) data, and with the estimated impedances, insertion loss formulas for large silencers are developed using boundary element method (BEM). The developed formulas can be efficiently used for predicting acoustic performance of the silencers for ships.

Tune of Hydrodynamic Coefficients Based on Empirical Formula by Using Manoeuvring Performance Indices of a Ship (선박 조종성능지수를 활용한 경험식 기반 유체력 미계수의 보정)

  • Kim, Dong Jin;Kim, Yeon Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.331-344
    • /
    • 2020
  • Ship's hydrodynamic coefficients in manoeuvring equations are generally derived by captive model tests or numerical calculations. Empirical formulas have been also proposed in some previous researches, which were useful for practical predictions of hydrodynamic coefficients of a ship by using main dimensions only. In this study, ship's hydrodynamic coefficients based on empirical formulas were optimized by using its free running test data. Eight manoeuvring performance indices including steady turning radius, reach in zig-zag as well as well-known IMO criteria indices are selected in order to compare simulation results with free runs effectively. Sensitivities of hydrodynamic coefficients on manoeuvring performance indices are analyzed. And hydrodynamic coefficients are tuned within fixed bounds in order of sensitivity so that they are tuned as little as possible. Linear and nonlinear coefficients are successively tuned by using zig-zag and turning performance indices. Trajectories and velocity components by simulations with tuned hydrodynamic coefficients are in good agreements with free running tests. Tuned coefficients are also compared with coefficients by captive model tests or RANS calculations in other previous researches, and the magnitudes and signs of tunes are discussed.

Prediction of Stability Number for Tetrapod Armour Block Using Artificial Neural Network and M5' Model Tree (인공신경망과 M5' model tree를 이용한 Tetrapod 피복블록의 안정수 예측)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.109-117
    • /
    • 2011
  • It was calculated using empirical formulas for the weight of Tetrapod, which was a representative armor unit in the rubble mound breakwater in Korea. As the formulas were evaluated from a curve-fitting with the result of hydraulic test, the uncertainty of experimental error was included. Therefore, the neural network and M5' model tree were used to minimize the uncertainty and predicted the stability number of armor block. The index of agreement between the predicted and measured stability number was calculated to assess the degree of uncertainty for each model. While the neural network with the highest index of agreement have an excellent prediction capability, a significant disadvantage exists that general designers can not easily handle the method. However, although M5' model tree has a lower prediction capability than the neural network, the model tree is easily used by the designers because it has a good prediction capability compared with the existing empirical formula and can be used to propose the formulas like an empirical formula.

A study on the characteristics of hull shape parameter of fishing vessel types (트롤어선 선종의 선형 특성 계수에 관한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki;KIM, Min-Son
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • Engaged in trawling in limited fishing grounds with a number of fish schools could cause collisions between fishing vessels. Therefore, providing accurate maneuver information according to the situation could be regarded as essential for improving seafarers safety and fishing efficiency as well as safety of navigation. It is difficult to obtain all maneuver information through sea trial tests only, so a method through empirical formula is necessary. Since most empirical formulas are developed for merchant ship types, especially the characteristics of hull shape parameter like CbB/L and dCb/B etc. are clearly different between fishing vessels and merchant ships, this could occur estimation errors. Therefore, in this study, the authors have selected target fishing vessels and merchant ships and analyzed the characteristics of hull shape parameter according to the ship types. Based on this analysis, the empirical formula developed for the merchant ship type has applied to the target fishing vessels; it has verified through the turning motion simulation that the estimation error could be generated. In conclusion, it is necessary to include the characteristics of the hull shape parameter of fishing vessels in the empirical formula in order to apply the empirical formula has developed for merchant ship types to fishing vessel types.