• Title/Summary/Keyword: empirical correlation

Search Result 1,239, Processing Time 0.026 seconds

Variogram Estimation of Tropospheric Delay by Using Meteorological Data

  • Kim, Bu-Gyeom;Kim, Jong-Heon;Kee, Changdon;Kim, Donguk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.271-278
    • /
    • 2021
  • In this paper, a tropospheric delay error was calculated by using meteorological data collect from weather station and Saastamoinen model, and an empirical variogram of the tropospheric delay in the Korean peninsula was estimated. In order to estimate the empirical variogram of the tropospheric delay according to weather condition, sunny day, rainy day, and typhoon day were selected as analysis days. Analysis results show that a maximum correlation range of the empirical variogram on sunny day was about 560 km because there is overall trend of the tropospheric delay. On the other hand, the maximum correlation range of the empirical variogram on rainy was about 150 km because the regional variation was large. Although there is regional variation when the typhoon exists, there is a trend of the tropospheric delay due to a movement of the typhoon. Therefore, the maximum correlation range of the empirical variogram on typhoon day was about 280 km which is between sunny and rainy day.

Applicability Analysis of Empirical Methods for the Calculation of TBM Advance Rate (국내 TBM굴진속도 산정을 위한 경험적 방법들의 적용성 분석)

  • 조만섭;우동찬;김경곤;이진무
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.260-269
    • /
    • 2003
  • In order to introduce to engineers the suitable calculation techniques of TBM advance rate (ad.) and ultimately promote to understand the designing process, this study was carried out. We analyzed the 17 bored data of TBM which applied to the roadway and water supply tunnels in Korea. From this analysis, it was able to how that the average utilization is 30.83% md the correlation equation of Ad and TBM´s diameter (D) is Ad(m/month) = 506.05ㆍ $e^{-0.1162}$$\times$D than the correlation coefficient ($R^2$) is 0.76. In the object of the W tunnel of Seoul-Busan highspeed railway, the Ad of TBM 5.0mø was analyzed by the variety of empirical models and upper correlation equation. Average Ad of the empirical models was calculated to be larger than one of the upper equations. But considering only the results of 3.0~5.0mø TBM in the 17 bored data, the average Ad by the models belongs to the similar range of bored data. Therefore, when the reliability and representative of parameters are decreased, a reliability test should be carried out through the comparison a variety of empirical models with the upper correlation equation.

Application of CFD model for passive autocatalytic recombiners to formulate an empirical correlation for integral containment analysis

  • Vikram Shukla;Bhuvaneshwar Gera;Sunil Ganju;Salil Varma;N.K. Maheshwari;P.K. Guchhait;S. Sengupta
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4159-4169
    • /
    • 2022
  • Hydrogen mitigation using Passive Autocatalytic Recombiners (PARs) has been widely accepted methodology inside reactor containment of accident struck Nuclear Power Plants. They reduce hydrogen concentration inside reactor containment by recombining it with oxygen from containment air on catalyst surfaces at ambient temperatures. Exothermic heat of reaction drives the product steam upwards, establishing natural convection around PAR, thus invoking homogenisation inside containment. CFD models resolving individual catalyst plate channels of PAR provide good insight about temperature and hydrogen recombination. But very thin catalyst plates compared to large dimensions of the enclosures involved result in intensive calculations. Hence, empirical correlations specific to PARs being modelled are often used in integral containment studies. In this work, an experimentally validated CFD model of PAR has been employed for developing an empirical correlation for Indian PAR. For this purpose, detailed parametric study involving different gas mixture variables at PAR inlet has been performed. For each case, respective values of gas mixture variables at recombiner outlet have been tabulated. The obtained data matrix has then been processed using regression analysis to obtain a set of correlations between inlet and outlet variables. The empirical correlation thus developed, can be easily plugged into commercially available CFD software.

An Empirical Correlation of Refrigerant Flow Rate Through Coiled Capillary Tubes (코일 형상을 고려한 모세관 냉매유량 예측 상관식)

  • Park, Cha-Sik;Jang, Yong-Hee;Lee, Young-Soo;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.91-98
    • /
    • 2007
  • Air-conditioners use a spirally coiled capillary tube as an expansion device to enhance compactness of the unit. However, most empirical correlations in open literature were developed for straight capillary tubes without considering coiled effects on the mass flow rate. The objectives of this study are to investigate the flow characteristics of coiled capillary tubes and to develop a generalized correlation for mass flow rate through coiled capillary tubes. The mass flow rates through the coiled capillary tubes and straight capillary tubes were measured by varying operating conditions and tube geometry. The condensing temperatures varied at 40.5, 47.5 and $54.5^{\circ}C$, and subcoolings altered at 3.5, 6.5 and $11.5^{\circ}C$. The mass flow rates of the coiled capillary tubes decreased by 5 to 16% compared with those of the straight capillary tubes at the same operating conditions. An empirical correlation was developed by introducing equivalent length of capillary tube with non-dimensional parameters for coiled shape. The present correlation predicts the data with average and standard deviations of 0.33% and 3.24%, respectively.

Heat Transfer Correlation for the Forced Convective Flow on Single Circular Fin-tube Heat Exchanger

  • Kang Hie-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.14-18
    • /
    • 2006
  • This study was performed to investigate the heat transfer characteristics of the circular fin-tube heat exchanger. This paper contains the experimental data for the seven kinds of fin geometries. The correlation of Stasiulevicius agreed with the experimental data at high Reynolds number, however not well at low Reynolds number. The Nusselt number was well correlated with Graetz number, and showed a transition near Gz=10. An empirical correlation proposed in the present study agreed well with the experimental data.

Natural Convection Correlation of Circular Finned Tube Heat Exchanger (원형휜-원형관 열교환기에 대한 자연대류 열전달상관식)

  • Kang, Hie-Chan;Jang, Hyun-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.747-752
    • /
    • 2008
  • An experimental study has been conducted on the natural convection heat transfer for the 7 kinds of circular finned tube heat exchangers. Empirical correlation was suggested at the range of 3,500

Zricaloy-4 Oxidation Kinetics in High-Pressure High-Temperature Steam and Application to Accident Analysis (고압 고온 수증기에서 지르칼로이-4 산화반응 정량화 및 사고해석에의 응용)

  • 박광헌
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.6
    • /
    • pp.363-370
    • /
    • 2002
  • Empirical equations for the oxide thickness and the weight gain of Zircaloy-4 cladding during the oxidation in high temperature, high pressure steam have been developed. Firstly, the empirical equations for oxide thickness in 1 atm steam in 700~100$0^{\circ}C$ were made, then, the enhancement factor for the steam pressure effects on Zircaloy-4 cladding oxidation in high temperature steam was added. Based on the analysis of the weight fraction of dissolved oxygen in metal layer, empirical equations for the weight gain of Zircaloy-4 in high pressure, high temperature steam were developed. We compare the developed empirical equations with the Baker-Just correlation. The Baker-Just correlation can give a non-conservative estimation of oxidation of Zircaloy-4, depending on the steam pressure. These developed empirical equations can be used for the correct estimation of oxidation of Zircaloy-4 during accident analysis.

Investigation on the Sauter Mean Diameter of an Air-Assisted Fuel Injector -Operating Parameter Consideration (운전조건에 따른 공기보조 분사기의 Sauter 평균입경에 대한 고찰)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.42-50
    • /
    • 2000
  • Drop size distribution of an air-assisted fuel injector(AAFI) was investigated. Influence of parameters such as ambient air density supply pressure and air-liquid mass ratio(ALR) was examined through both measurement and analysis. The Sauter mean diameter$D_{32}$ varied from 9 to 25$\mu$m throughout all experimental conditions. An empirical correlation for droplet size was obtained. Analytical correlations for predicting $D_{32}$ with respect to operating conditions were also derived through energy consideration and introduction of a simplified model of the from the empirical fitting was adapted to the original equation the proposed correlation in this study matched more closely with measured results. The current correlation exhibited a favorable study matched more closely with measured results. The current correlation exhibited a favorable prediction for $D_{32}$ compared to that by the empirical correlation at selected experimental conditions so that it may be used to predict atomization performance of the AAFI at operating conditions which was not covered in the measurements. After validation the analytical equation was applied to survey the feasible operating conditions for gasoline direct injection application.

  • PDF

Axial capacity of FRP reinforced concrete columns: Empirical, neural and tree based methods

  • Saha Dauji
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.283-300
    • /
    • 2024
  • Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.

Empirical Correlation for Natural Convective Heat Transfer around Microfin Arrays (마이크로 휜 배열 주위의 자연대류 열전달에 관한 실험 관계식)

  • Kim, Jin-Sub;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2055-2060
    • /
    • 2007
  • Microfin arrays with fin heights of 100 ${\mu}$m and 200 ${\mu}$m and six different spacings from 30 ${\mu}m$to 360 ${\mu}m$ are fabricated using the DRIE process. Natural convective heat transfer around the microfin arrays on both vertical and horizontal surfaces is experimentally examined. It turns out that the orientation effect of microfin arrays is negligible compared with macrofin arrays. The obtained heat transfer coefficients are compared with the existing heat transfer correlation for the macrofin arrays. It is concluded that the existing macrocorrelation is no longer valid for the microfin arrays. Relevant empirical correlations for microfin arrays on the vertical and horizontal surfaces are presented based on the present experimental data.

  • PDF