• Title/Summary/Keyword: empirical bayes

Search Result 106, Processing Time 0.029 seconds

Classifying Social Media Users' Stance: Exploring Diverse Feature Sets Using Machine Learning Algorithms

  • Kashif Ayyub;Muhammad Wasif Nisar;Ehsan Ullah Munir;Muhammad Ramzan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.

The Hazardous Expressway Sections for Drowsy Driving Using Digital Tachograph in Truck (화물차 DTG 데이터를 활용한 고속도로 졸음운전 위험구간 분석)

  • CHO, Jongseok;LEE, Hyunsuk;LEE, Jaeyoung;KIM, Ducknyung
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.160-168
    • /
    • 2017
  • In the past 10 years, the accidents caused by drowsy driving have occupied about 23% of all traffic accidents in Korea expressway network and this rate is the highest one among all accident causes. Unlike other types of accidents caused by speeding and distraction to the road, the accidents by drowsy driving should be managed differently because the drowsiness might not be controlled by human's will. To reduce the number of accidents caused by drowsy driving, researchers previously focused on the spot based analysis. However, what we actually need is a segment (link) and occurring time based analysis, rather than spot based analysis. Hence, this research performs initial effort by adapting link concept in terms of drowsy driving on highway. First of all, we analyze the accidents caused by drowsy in historical accident data along with their road environments. Then, links associate with driving time are analyzed using digital tachograph (DTG) data. To carry this out, negative binomial regression models, which are broadly used in the field, including highway safety manual, are used to define the relationship between the number of traffic accidents on expressway and drivers' behavior derived from DTG. From the results, empirical Bayes (EB) and potential for safety improvement (PSI) analysis are performed for potential risk segments of accident caused by drowsy driving on the future. As the result of traffic accidents caused by drowsy driving, the number of the traffic accidents increases with increase in annual average daily traffic (AADT), the proportion of trucks, the amount of DTG data, the average proportion of speeding over 20km/h, the average proportion of deceleration, and the average proportion of sudden lane-changing.

A Report on the Inter-Gene Correlations in cDNA Microarray Data Sets (cDNA 마이크로어레이에서 유전자간 상관 관계에 대한 보고)

  • Kim, Byung-Soo;Jang, Jee-Sun;Kim, Sang-Cheol;Lim, Jo-Han
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.3
    • /
    • pp.617-626
    • /
    • 2009
  • A series of recent papers reported that the inter-gene correlations in Affymetrix microarray data sets were strong and long-ranged, and the assumption of independence or weak dependence among gene expression signals which was often employed without justification was in conflict with actual data. Qui et al. (2005) indicated that applying the nonparametric empirical Bayes method in which test statistics were pooled across genes for performing the statistical inference resulted in the large variance of the number of differentially expressed genes. Qui et al. (2005) attributed this effect to strong and long-ranged inter-gene correlations. Klebanov and Yakovlev (2007) demonstrated that the inter-gene correlations provided a rich source of information rather than being a nuisance in the statistical analysis and they developed, by transforming the original gene expression sequence, a sequence of independent random variables which they referred to as a ${\delta}$-sequence. We note in this report using two cDNA microarray data sets experimented in this country that the strong and long-ranged inter-gene correlations were still valid in cDNA microarray data and also the ${\delta}$-sequence of independence could be derived from the cDNA microarray data. This note suggests that the inter-gene correlations be considered in the future analysis of the cDNA microarray data sets.

Assessing Estimation Methods of the Expected Crashes using Panel Traffic Crash Data (패널교통사고자료 기반 기대교통사고건수 추정기법 평가)

  • Sin, Gang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.103-111
    • /
    • 2011
  • To evaluate highway safety countermeasures or identify high risk sites, the expected crashes for a site (or segment) have been estimated using the panel crash data. Past studies show that two different methods can be employed to estimate the expected crashes: observed crash based method and empirical Bayes (EB) method. This study conducts a simulation study to analyze how the estimation errors of the two estimates are affected by the different structures of the panel crash data and the presence of the change in safety over time. The results disclose that the estimation errors of the observed crash based estimates (i.e. the mean observed crash and comparative parallel estimate) are always greater than those of the EB estimates regardless of the structure of the panel crash data and the presence of the change in safety over time. Thus, it is highly recommended that the EB method be used in the study of traffic safety to obtain more reliable estimates for the expected crashes. In addition, this study corroborates that the estimation errors of the two estimates decrease as the analysis periods increase if safety does not change over time. Hence, it is also recommended that the 1-year analysis period used for identifying high risk sites in Korea be extended to produce more efficient estimates of the time-constant expected crashes.

Difference of Area-based deprivation and Education on Cerebrovascular Mortality in Korea (교육수준과 지역결핍지수에 따른 뇌혈관질환 사망률 차이)

  • Sim, Jeoung-Ha;Ahn, Dong-Choon;Son, Mi-A
    • Health Policy and Management
    • /
    • v.22 no.2
    • /
    • pp.163-182
    • /
    • 2012
  • This study was performed to identify the difference of the area-based deprivation and the educational level on the cerebrovascular mortality in Korea. Data used in this study was obtained from the Death Certificate Data 2000 and the 2000 Census produced by Korean National Statistics(NSO). We classified the whole country into 246 areas based on the administrative districts. Then, the Standardized Mortality Ratio (SMR) in cerebrovascular disease was calculated according to the sex, education level and 246 areas. Its Predicted SMR was calculated by the Empirical Bayes Methods to reduce the variation of the SMR values. The area-based deprivation of 246 areas were measured using the modified Carstairs index in which the 5 indicators consisted of overcrowding, the unemployment ratio of men, the percentage of households classified low social class, the percentage of non home owners, and finally those houses lacking basic amenities. The correlation between the area-based deprivation and the SMR of the whole country and the correlation between the area-based deprivation and the SMR of each metropolitan cities or provinces was analyzed by the Pearson correlation analysis method. After classifying the deprivation of 246 areas into 5 levels, we performed the random intercept Poisson regression analysis after adjusting education level and age using Empirical Bayes Method to investigate the relationship between the 5 deprivation levels and the cerebrovascular mortality. The SMR was increased in lower education level. Each 246 areas had different values in SMR, Predicted SMR and area-based deprivation. The area-based deprivation and the SMR of the whole country was not correlated in both sexes. The education level of an individual was associated the risk of cerebrovascular mortality in men. The risk of cerebrovascular mortality increased with age compared to the reference(<30). The area-based deprivation was not associated with the risk of cerebrovascular in both sexes. The findings of this study suggest that the SMR had positive and negative correlations with area-based deprivation depending on the metropolitan cities or province. It also suggests that the individual education level and age were related with mortality and finally that the area-based deprivation was not associated to the cerebrovascular mortality in Korea.

The Impact of Comments on Music Download and Streaming: A Text Mining Analysis (댓글이 음원 판매량에 미치는 차별적 영향에 관한 텍스트마이닝 분석)

  • Park, Myeong-Seok;Kwon, Young-Jin;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.91-108
    • /
    • 2018
  • This study mainly focused on measuring the impact of comments for a particular song on the number of streamings and downloads. We modeled multiple regression equations to perform this analysis. We chose digital music market for the object of analysis because of its inherent characteristics, such as experience goods, high bandwagon effect, and so on. We carefully utilized text mining technique in accordance with the algorithm of Naïve Bayes classifier to distinguish whether a comment for a piece of music be regarded as positive or negative. In addition, we used 'size of agency' and 'existence of hit song' as moderating variables. The reason for usage of those variables is that those are assumed to affect users' decision for selecting particular song especially when downloading or streaming via music sites. We found empirical evidences that positive comments for a particular song increase the number of both downloads and streamings. However, positive comments may decrease the number of downloads when the size of agency of the artist is big. As a result, we were able to say that a positive comment for a particular song functioned as 'word-of-mouth' effect, inducing other users' behavioral response. We also found that other features of an artist such as size of the agency that the artist belongs to functioned as an external factor along with feature of the song itself.

Socioeconomic Predictors of Diabetes Mortality in Japan: An Ecological Study Using Municipality-specific Data

  • Okui, Tasuku
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.5
    • /
    • pp.352-359
    • /
    • 2021
  • Objectives: The aim of this study was to examine the geographic distribution of diabetes mortality in Japan and identify socioeconomic factors affecting differences in municipality-specific diabetes mortality. Methods: Diabetes mortality data by year and municipality from 2013 to 2017 were extracted from Japanese Vital Statistics, and the socioeconomic characteristics of municipalities were obtained from government statistics. We calculated the standardized mortality ratio (SMR) of diabetes for each municipality using the empirical Bayes method and represented geographic differences in SMRs in a map of Japan. Multiple linear regression was conducted to identify the socioeconomic factors affecting differences in SMR. Statistically significant socioeconomic factors were further assessed by calculating the relative risk of mortality of quintiles of municipalities classified according to the degree of each socioeconomic factor using Poisson regression analysis. Results: The geographic distribution of diabetes mortality differed by gender. Of the municipality-specific socioeconomic factors, high rates of single-person households and unemployment and a high number of hospital beds were associated with a high SMR for men. High rates of fatherless households and blue-collar workers were associated with a high SMR for women, while high taxable income per-capita income and total population were associated with low SMR for women. Quintile analysis revealed a complex relationship between taxable income and mortality for women. The mortality risk of quintiles with the highest and lowest taxable per-capita income was significantly lower than that of the middle-income quintile. Conclusions: Socioeconomic factors of municipalities in Japan were found to affect geographic differences in diabetes mortality.

Development of Evaluation Model for Black Spot Improvement Priorities by using Emperical Bayes Method (EB기법을 이용한 사고잦은 곳 개선사업 우선순위 판정기법 개발)

  • Jeong, Seong-Bong;Hwang, Bo-Hui;Seong, Nak-Mun;Lee, Seon-Ha
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.81-90
    • /
    • 2009
  • The safety management of a road network comprises four basic inter-related components:identification of sites(black spot) requiring safety investigation, diagnosis of safety problems, selection of feasible treatments for potential treatment candidates, and prioritization of treatments given limited budgets(Persaud, 2001). Identification process of selecting black spot is very important for efficient investigation of sites. In this study, the accident prediction model for EB method was developed by using accident data and geometric conditions of black spots selected from four-leg signalized intersections in In-cheon City for three years (2004-2006). In addition, by comparing the rank nomination technique using EB method to that by using accident counts, we managed to show the problems which the existing method have and the necessity for developing rational prediction model. As a result, in terms of total number of accidents, both the counts predicted by existing non-linear regression model and that by EB method have high good of fitness, but EB method, considering both the accident counts by sites and total number of accident, has better good of fitness than non-linear poison model. According to the result of the comparison of ranks nominated for treatment between two methods, the rank for treatment of almost sites does not change but SeoHae intersection and a few other intersections have significant changes in their rank. This shows that, with the technique proposed in the study, the RTM problem caused by using real accident counts can be overcome.

A Study on Fault Classification by EEMD Application of Gear Transmission Error (전달오차의 EEMD적용을 통한 기어 결함분류연구)

  • Park, Sungho;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • In this paper, classification of spall and crack faults of gear teeth is studied by applying the ensemble empirical mode decomposition(EEMD) for the gear transmission error(TE). Finite element models of the gears with the two faults are built, and TE is obtained by simulation of the gears under loaded contact. EEMD is applied to the residuals of the TE which are the difference between the normal and faulty signal. From the result, the difference of spall and crack faults are clearly identified by the intrinsic mode functions(IMF). A simple test bed is installed to illustrate the approach, which consists of motor, brake and a pair of spur gears. Two gears are employed to obtain the TE for the normal, spalled, and cracked gears, and the type of the faults are separated by the same EEMD application process. In order to quantify the results, crest factors are applied to each IMF. Characteristics of spall and crack are well represented by the crest factors of the first and the third IMF, which are used as the feature signals. The classification is carried out using the Bayes decision theory using the feature signals acquired through the experiments.

Effect of missing values in detecting differentially expressed genes in a cDNA microarray experiment

  • Kim, Byung-Soo;Rha, Sun-Young
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • The aim of this paper is to discuss the effect of missing values in detecting differentially expressed genes in a cDNA microarray experiment in the context of a one sample problem. We conducted a cDNA micro array experiment to detect differentially expressed genes for the metastasis of colorectal cancer based on twenty patients who underwent liver resection due to liver metastasis from colorectal cancer. Total RNAs from metastatic liver tumor and adjacent normal liver tissue from a single patient were labeled with cy5 and cy3, respectively, and competitively hybridized to a cDNA microarray with 7775 human genes. We used $M=log_2(R/G)$ for the signal evaluation, where Rand G denoted the fluorescent intensities of Cy5 and Cy3 dyes, respectively. The statistical problem comprises a one sample test of testing E(M)=0 for each gene and involves multiple tests. The twenty cDNA microarray data would comprise a matrix of dimension 7775 by 20, if there were no missing values. However, missing values occur for various reasons. For each gene, the no missing proportion (NMP) was defined to be the proportion of non-missing values out of twenty. In detecting differentially expressed (DE) genes, we used the genes whose NMP is greater than or equal to 0.4 and then sequentially increased NMP by 0.1 for investigating its effect on the detection of DE genes. For each fixed NMP, we imputed the missing values with K-nearest neighbor method (K=10) and applied the nonparametric t-test of Dudoit et al. (2002), SAM by Tusher et al. (2001) and empirical Bayes procedure by $L\ddot{o}nnstedt$ and Speed (2002) to find out the effect of missing values in the final outcome. These three procedures yielded substantially agreeable result in detecting DE genes. Of these three procedures we used SAM for exploring the acceptable NMP level. The result showed that the optimum no missing proportion (NMP) found in this data set turned out to be 80%. It is more desirable to find the optimum level of NMP for each data set by applying the method described in this note, when the plot of (NMP, Number of overlapping genes) shows a turning point.

  • PDF