• Title/Summary/Keyword: emission efficiency

Search Result 1,876, Processing Time 0.036 seconds

Review of Production, Husbandry and Sustainability of Free-range Pig Production Systems

  • Miao, Z.H.;Glatz, P.C.;Ru, Y.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1615-1634
    • /
    • 2004
  • A review was undertaken to obtain information on the sustainability of pig free-range production systems including the management, performance and health of pigs in the system. Modern outdoor rearing systems requires simple portable and flexible housing with low cost fencing. Local pig breeds and outdoor-adapted breeds for certain environment are generally more suitable for free-range systems. Free-range farms should be located in a low rainfall area and paddocks should be relatively flat, with light topsoil overlying free-draining subsoil with the absence of sharp stones that can cause foot damage. Huts or shelters are crucial for protecting pigs from direct sun burn and heat stress, especially when shade from trees and other facilities is not available. Pigs commonly graze on strip pastures and are rotated between paddocks. The zones of thermal comfort for the sow and piglet differ markedly; between 12-22$^{\circ}C$ for the sow and 30-37$^{\circ}C$ for piglets. Offering wallows for free-range pigs meets their behavioural requirements, and also overcomes the effects of high ambient temperatures on feed intake. Pigs can increase their evaporative heat loss via an increase in the proportion of wet skin by using a wallow, or through water drips and spray. Mud from wallows can also coat the skin of pigs, preventing sunburn. Under grazing conditions, it is difficult to control the fibre intake of pigs although a high energy, low fibre diet can be used. In some countries outdoor sows are fitted with nose rings to prevent them from uprooting the grass. This reduces nutrient leaching of the land due to less rooting. In general, free-range pigs have a higher mortality compared to intensively housed pigs. Many factors can contribute to the death of the piglet including crushing, disease, heat stress and poor nutrition. With successful management, free-range pigs can have similar production to door pigs, although the growth rate of the litters is affected by season. Piglets grow quicker indoors during the cold season compared to outdoor systems. Pigs reared outdoors show calmer behaviour. Aggressive interactions during feeding are lower compared to indoor pigs while outdoor sows are more active than indoor sows. Outdoor pigs have a higher parasite burden, which increases the nutrient requirement for maintenance and reduces their feed utilization efficiency. Parasite infections in free-range pigs also risks the image of free-range pork as a clean and safe product. Diseases can be controlled to a certain degree by grazing management. Frequent rotation is required although most farmers are keeping their pigs for a longer period before rotating. The concept of using pasture species to minimise nematode infections in grazing pigs looks promising. Plants that can be grown locally and used as part of the normal feeding regime are most likely to be acceptable to farmers, particularly organic farmers. However, one of the key concerns from the public for free-range pig production system is the impact on the environment. In the past, the pigs were held in the same paddock at a high stocking rate, which resulted in damage to the vegetation, nutrient loading in the soil, nitrate leaching and gas emission. To avoid this, outdoor pigs should be integrated in the cropping pasture system, the stock should be mobile and stocking rate related to the amount of feed given to the animals.

Evaluation of the influence of a visual design of an examination guide on patient comprehension and testing accuracy (검사 안내문의 시각적 디자인화가 환자의 검사 이해도 및 정확성에 미치는 영향 평가)

  • Kang, Young-Eun;Jung, Woo-Young;Hong, Bo-Ruem
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2019
  • Purpose An examination guide is a useful medium to provide the patient with an overview, pre- and post-test preparation, and precautions of nuclear testing. The design and arrangement of existing written texts and announcements were evaluated to elucidate the comprehension of patients undergoing testing. Materials and Methods Informational material describing bone scanning and $^{201}thallium$ myocardium perfusion single-photon emission computed tomography (SPECT), as a secondary examination, which accounts for the largest portion of gamma imaging at Asan Hospital (Seoul, South Korea), was selected as an improvement target in consultation with a national innovation center. Existing informational material was dispensed to patients scheduled for bone scans from November 2016 to February 2017 and the revised material was issued from March 2017 to May 2017. A survey was conducted of 200 patients who underwent $^{201}thallium$ myocardium perfusion SPECT before and after the revisions (n = 100 each time period) to assess the patients' understanding of the informational material. Results When comparing the use of the conventional vs. revised material, the number of patients who received treatment before bone scanning had decreased from 130 to 60, while the number of those who required additional imaging decreased from 53 to 14. Prior to the revision, 43% of patients underwent testing before preparation and 18% underwent additional testing. The decreased need for additional image acquisition after revision of the informational material resulted in a decrease in acquisition time of about 2 min, from 16.5 to 14.2 min. In the case of $^{201}thallium$ myocardium perfusion SPECT, patient comprehension of all five items surveyed had increased, while the number of patients who had repeatedly asked about various facets of the procedure pre- and post-testing had decreased from 36% to 16% and 31% to 14%, respectively. Conclusion Lower patient comprehension is accompanied by a decrease in image quality due to non-compliance during pre-testing and may lead to repetitive questions from the patient, which may also negatively affect the fatigue and work efficiency of the examiner. Improved readability and visibility of informational material through visualization was correlated with greater patient comprehension as well as improved image quality and acquisition time.

A stratified random sampling design for paddy fields: Optimized stratification and sample allocation for effective spatial modeling and mapping of the impact of climate changes on agricultural system in Korea (농지 공간격자 자료의 층화랜덤샘플링: 농업시스템 기후변화 영향 공간모델링을 위한 국내 농지 최적 층화 및 샘플 수 최적화 연구)

  • Minyoung Lee;Yongeun Kim;Jinsol Hong;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.526-535
    • /
    • 2021
  • Spatial sampling design plays an important role in GIS-based modeling studies because it increases modeling efficiency while reducing the cost of sampling. In the field of agricultural systems, research demand for high-resolution spatial databased modeling to predict and evaluate climate change impacts is growing rapidly. Accordingly, the need and importance of spatial sampling design are increasing. The purpose of this study was to design spatial sampling of paddy fields (11,386 grids with 1 km spatial resolution) in Korea for use in agricultural spatial modeling. A stratified random sampling design was developed and applied in 2030s, 2050s, and 2080s under two RCP scenarios of 4.5 and 8.5. Twenty-five weather and four soil characteristics were used as stratification variables. Stratification and sample allocation were optimized to ensure minimum sample size under given precision constraints for 16 target variables such as crop yield, greenhouse gas emission, and pest distribution. Precision and accuracy of the sampling were evaluated through sampling simulations based on coefficient of variation (CV) and relative bias, respectively. As a result, the paddy field could be optimized in the range of 5 to 21 strata and 46 to 69 samples. Evaluation results showed that target variables were within precision constraints (CV<0.05 except for crop yield) with low bias values (below 3%). These results can contribute to reducing sampling cost and computation time while having high predictive power. It is expected to be widely used as a representative sample grid in various agriculture spatial modeling studies.

Influence of a chemical additive on the reduction of highly concentrated ammonium nitrogen(NH4+-N) in pig wastewater (양돈 폐수로부터 고농도 암모니아성 질소의 감소를 위한 화학적 첨가제의 영향)

  • Su Ho Bae;Eun Kim;Keon Sang Ryoo
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.267-274
    • /
    • 2022
  • Excess nitrogen (N) flowing from livestock manure to water systems poses a serious threat to the natural environment. Thus, livestock wastewater management has recently drawn attention to this related field. This study first attempted to obtain the optimal conditions for the further volatilization of NH3 gas generated from pig wastewater by adjusting the amount of injected magnesia (MgO). At 0.8 wt.% of MgO (by pig wastewater weight), the volatility rate of NH3 increased to 75.5% after a day of aeration compared to untreated samples (pig wastewater itself). This phenomenon was attributed to increases in the pH of pig wastewater as MgO dissolved in it, increasing the volatilization efficiency of NH3. The initial pH of pig wastewater was 8.4, and the pH was 9.2 when MgO was added up to 0.8 wt.%. Second, the residual ammonia nitrogen (NH4+-N) in pig wastewater was removed by precipitation in the form of struvite (NH4MgPO4·6H2O) by adjusting the pH after adding MgO and H3PO4. Struvite produced in the pig wastewater was identified by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) analysis. White precipitates began to form at pH 6, and the higher the pH, the lower the concentration of NH4+-N in pig wastewater. Of the total 86.1% of NH4+-N removed, 62.4% was achieved at pH 6, which was the highest removal rate. Furthermore, how struvite changes with pH was investigated. Under conditions of pH 11 or higher, the synthesized struvite was completely decomposed. The yield of struvite in the precipitate was determined to be between 68% and 84% through a variety of analyses.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

A Comparative Study of Subset Construction Methods in OSEM Algorithms using Simulated Projection Data of Compton Camera (모사된 컴프턴 카메라 투사데이터의 재구성을 위한 OSEM 알고리즘의 부분집합 구성법 비교 연구)

  • Kim, Soo-Mee;Lee, Jae-Sung;Lee, Mi-No;Lee, Ju-Hahn;Kim, Joong-Hyun;Kim, Chan-Hyeong;Lee, Chun-Sik;Lee, Dong-Soo;Lee, Soo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.234-240
    • /
    • 2007
  • Purpose: In this study we propose a block-iterative method for reconstructing Compton scattered data. This study shows that the well-known expectation maximization (EM) approach along with its accelerated version based on the ordered subsets principle can be applied to the problem of image reconstruction for Compton camera. This study also compares several methods of constructing subsets for optimal performance of our algorithms. Materials and Methods: Three reconstruction algorithms were implemented; simple backprojection (SBP), EM, and ordered subset EM (OSEM). For OSEM, the projection data were grouped into subsets in a predefined order. Three different schemes for choosing nonoverlapping subsets were considered; scatter angle-based subsets, detector position-based subsets, and both scatter angle- and detector position-based subsets. EM and OSEM with 16 subsets were performed with 64 and 4 iterations, respectively. The performance of each algorithm was evaluated in terms of computation time and normalized mean-squared error. Results: Both EM and OSEM clearly outperformed SBP in all aspects of accuracy. The OSEM with 16 subsets and 4 iterations, which is equivalent to the standard EM with 64 iterations, was approximately 14 times faster in computation time than the standard EM. In OSEM, all of the three schemes for choosing subsets yielded similar results in computation time as well as normalized mean-squared error. Conclusion: Our results show that the OSEM algorithm, which have proven useful in emission tomography, can also be applied to the problem of image reconstruction for Compton camera. With properly chosen subset construction methods and moderate numbers of subsets, our OSEM algorithm significantly improves the computational efficiency while keeping the original quality of the standard EM reconstruction. The OSEM algorithm with scatter angle- and detector position-based subsets is most available.