• Title/Summary/Keyword: emergency shut down

Search Result 25, Processing Time 0.027 seconds

Emergency Power Backup System with Wide Input Voltage Ranges (넓은 입력전압 범위를 갖는 비상전원 공급장치)

  • Chae, Hyungjun;Kim, Kyungdong;Oh, Hyungrock;Lee, Junyoung
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.175-176
    • /
    • 2010
  • 본 논문에서는 자기 베어링을 이용한 자기부상형 터보분자펌프 운용시 그 시스템에 공급되는 입력전원이 중단될 경우 모터의 발전 전압을 이용하여 일정시간동안 자기 베어링을 구동하여 분자펌프의 안정된 shut-down을 유도하도록 제어기에 전원을 공급하는 전원장치를 제안한다. 본 논문에서 제안한 전원장치는 300W급이며 입력전압 30~400V로 출력은 48V이다.

  • PDF

Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump (원심펌프의 시동 및 정지에 따른 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

A Study on the In-Pipe Surge Analysis for Cargo Unloading Piping System of LNG Carrier (LNG선의 화물 하역 배관망의 과도 응답 해석에 관한 연구)

  • Chun, Byung-Il;Woo, Jong-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.124-134
    • /
    • 1996
  • In this paper the pressures and flowrate distributions in the loading/unloading piping system of LNG carrier have been investigated in the case of unsteady flow state as well as steady one. Under emergency situation the main cargo pumps are forced to fail, and the ESD(Emergency Shut Down) valves and Stop valves are closed within set-time. The surge pressures according to the variations of valve closing time have been computed to recognize the surge phenomenon due to sudden decrease of flowrate. By means of these analysis results, the most important factors on the in-pipe surge phenomenon of cargo loading/unloading piping system of LNG Carrier are the type of ESD and Stop valves, valve closing time, and the pipe arrangements.

  • PDF

Development of Unmanned Aerial Vehicle System Integration Laboratory(UAV SIL) for the Integrated Verification (무인항공기 체계의 통합검증을 위한 무인항공기 체계통합실험실(UAV SIL) 개발)

  • Jae Ick Shim;Hee Chae Woo;Sang Jin Kim;Sang Jun Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.70-79
    • /
    • 2024
  • This paper describes the results of the development of the the unmanned aerial vehicle system integration laboratory(UAV SIL) for the integrated verification. This UAV SIL is designed to test the robustness of the UAV system including the operational logics and the flight control system behaviors under many abnormal and emergency conditions such as data-link losses, airborne subsystem failures, engine shut down conditions, and ground control station faults. This paper presents how to build the UAV SIL and how to verify the in-development UAV system through the UAV SIL.

A Study on the Implementation and Modeling of 20kW Scale ESS Load Test Device for Emergency Generator (소방용 비상발전기의 현장부하시험을 위한 20 kW급 ESS 부하시험장치 모델링과 구현에 관한 연구)

  • Choi, Seung-Kyou;Lee, Hu-Dong;Choi, Sung-Sik;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.541-550
    • /
    • 2019
  • An emergency generator is key equipment for fire-fighting to supply power to fire-fighting facilities, which protect property and people in cases of fire accidents. A rated load test for emergency generators must be carried out by connecting an emergency load to the generator in accordance with related regulations. However, a no-load test has been performed for emergency generators in general since serious problems can occur when the main power is cut off, including the damage of customer devices and shut down of critical loads. Therefore, this paper proposes a load test method for an emergency generator using energy storage system (ESS) without the interruption of main power. The emergency power system was also modeled based on PSCAD/EMTDC software, and a 200-kW scale ESS load test device was implemented. The simulation and test results show that the load test method is useful and practical for an emergency power supply system.

Hardware-Oriented Reliability Centered Maintenance for the Diesel Generators of Wolsong Unit 1

  • Bae, Sang-Min;Park, Jin-Hee;Kim, Tae-Woon;Lee, Yoon-Kee;Song, Jin-Bae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.587-591
    • /
    • 1997
  • The DGs (Diesel Generators) in NPP (Nuclear Power Plant) has been used for the emergency electric power source to shut down the nuclear reactor safely in case of station blackout. The RCM (Reliability Centered Maintenance) has been applied to DGs for increasing the safety of NPP. The structured defects of DG were not remedied by the improvement of maintenance method. As the first stage of RCM, to find the structured defects, its failure modes were searched and analyzed through the ten year maintenance information. The structured defects such as the air compressor, the lubricating oil pressure, and the insufficient load were the root causes of main failures. The air reservoir reinstallation, the lubricating oil tube modification, the load bank installation, and the qualitative instrumentation were the solutions for the hardware oriented RCM of DGs. There remains the software oriented RCM such as the rejection of useless maintenance, the preventive maintenance, the database of maintenance information, and the predictive maintenance.

  • PDF

Development of Gas Detector Location Index Technique to Prevent Explosion Accidents of Offshore Plant (해양플랜트 폭발사고 방지를 위한 가스감지기 위치 선정 방법 연구)

  • Sohn, Jung Min;Paik, Jeom Kee;Kim, Sang Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • Release of hazardous and flammable gas is a significant contributor to risk. The ignition of flammable gas clouds can lead to explosion accidents in the offshore installations. A gas detector, which is one of active protect systems, brings the module into a safe state through emergency shut down processes and reduces the damage by eliminating the dangerous releases. It is critical to understand the gas release, the wind field, and the complex geometry of installations to determine gas detector placement. In this paper, the Gas detector Location Index (GLI) which is a novel index for optimal detector location determination to efficiently prevent explosion accident using probabilistic approach.

The Development of an Automatic Aquaculture System -1. Using a model tank- (양어장 자동화 시스템의 개발 -1. 모형 수조를 중심으로-)

  • KANG Ho-Won;LEE Seong-Ho;KIM Je-Yoon;JEONG Seok-Kwon;KIM Sang-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.294-300
    • /
    • 1995
  • In aquaculture industrial field, an automatic management and control system is needed to cope with the difficulties such as expensive wage, ripe age of management worker and risk according to the unexpected change of environmental conditions in the aquarium. This paper introduces an automatic aquarium monitoring and control system. The system is developed using PC single board computer. A PC can be connected to multi-single hoard computers, and the communication between PC and single board computers is based on RS-422/485 interfacing method. The physical data of pH, DO, temperature and water level etc. are real-timely treated in the single board computer though individual transducers, transfered to the main monitoring PC through RS-422/485 communication, and those data are graphically shown on the PC monitor. Furthermore, the environmental circumstance can be monitored through the image processing system, and the emergency system can be operated under the condition of environmental incident such as electric power stoppage, DO deficiency, pump shut down and low level water etc.

  • PDF

A Study on the Safety Improvement by CFD Analysis for Packaged Type Hydrogen Refueling System (CFD 툴을 활용한 패키지형 수소충전시스템의 안전성 향상 연구)

  • HWANG, SOON-IL;KANG, SEUNG-KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • In this study, to ensure the safety of the packaged hydrogen refueling system, the improvement plan was derived by using 3-dimensional CFD program (FLACS). We also confirmed the effectiveness of risk reduction and the suitability of safety standard. By ventilation performance evaluation according to the position of the vent, it demonstrated that the vent should be installed at the ceiling to safely ventilate without stagnation of the leaked gas. In case of ventilation system according to KGS standard, risk situation could be resolved after about 5 minutes in the worst leaked condition. The result showed that jet fire and explosion inside the packaged system could affect the surrounding facilities. This proves that the standard for installing flame detectors, emergency shut down system and protection wall is appropriate.

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.