• Title/Summary/Keyword: embryotoxicity study

Search Result 22, Processing Time 0.022 seconds

Teratogenicity Study of KTC-1, a New Semisynthetic Rifamycin Derivative, in Rats (새로운 반합성 Rifamycin 유도체 KTC-1의 랫트 최기형 시험)

  • 김종춘;정문구;박종일;한상섭
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • A teratogenicity study of KTC-1, a new semisynthetic rifamycin antituberculous drug, was conducted in Sprague-Dawley rats. Dosages of KTC-1 0, 7, 21, and 63 mg/kg/day were administered to darns orally gayage from day 7 to day 17 of gestation. Two-third of dams per group were subjected to cesarean section on day 21 of pregnancy for examination of their fetuses, and the remaining one-third of darns per group were allowed to deliver naturally for postnatal examination of their offspring. At 21 mg/kg/day, an increase in the skeletal variations of F1 fetuses and a decrease in the body weight of F1 offspring were seen. At 63 mg/kg/day, a loss in body weight was observed in darns. An increase in fetal death rate, a decrease in litter size and body weight, and an increase in the incidence of visceral malforrnations and skeletal variations were found in F1 fetuses. In particular, lumar rib occurred at an incidence of 31%. In addition, an increase in the dead newborns at birth and neonatal deaths during the lactation period, a loss in body weight, and a decrease in spleen weight were observed in F1 offspring. There were no signs of maternal toxicity or embryotoxicity at 7 mg/kg/day. The results suggest that the no-effect dose level(NOEL)for dams is 21 mg/kg/day, and NOELs for F1 fetuses and offspring are 7 mg/kg/day.

  • PDF

Effects of Exposure Period on the Developmental Toxicity of 2-Bromopropane in Sprague-Dawley Rats

  • Shin, In-Sik;Lee, Jong-Chan;Kim, Kang-Hyeon;Ahn, Tai-Hwan;Bae, Chun-Sik;Moon, Chang-Jong;Kim, Sung-Ho;Shin, Dong-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.24 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • Recently we reported that 2-bromopropane (2-BP) has maternal toxicity, embryotoxicity, and teratogenicity in Sprague-Dawley rats. The aims of this study are to examine the potential effects of 2-BP administration on pregnant dams and embryo-fetal development, and to investigate the effects of metabolic activation induced by phenobarbital (PB) on developmental toxicities of 2-BP. Pregnant rats received 1000 mg/kg/day subcutaneous 2-BP injections on gestational days (GD) 6 through 10 (Group II and Group IIII) or 11 through 15 (Group IV). Pregnant rats in Group III received an intraperitoneal PB injection once daily at 80 mg/kg/day on GD 3 through 5 for induction of the liver metabolic enzyme system. Control rats received vehicle injections only on GD 6 through 15. All dams underwent caesarean sections on GD 20 and their fetuses were examined for external, visceral, and skeletal abnormalities. Significant adverse effects on pregnant dams and embryo-fetal development were observed in all the treatment groups, and the maternal and embryo-fetal effects of 2-BP observed in Group II were higher than those seen in Group IV. Conversely, maternal and embryo-fetal developmental toxicities observed in Group III were comparable to those seen in Group II. These results suggest that the potential effects of 2-BP on pregnant dams and embryo-fetal development are more likely in the first half of organogenesis (days $6{\sim}10$ of pregnancy) than in the second half and that the metabolic activation induced by PB pre-treatment did not modify the developmental toxic effects of 2-BP in rats.

Effect of Bisphenol A on Early Embryonic Development and the Expression of Glutathione S-transferase (GST) in the Sea Urchin (Hemicentrotus pulcherrimus) (말똥성게(Hemicentrotus pulcherrimus)의 초기배아 발생과 glutathione S-transferase (GST)의 발현에 대한 bisphenol A의 영향)

  • Hwang, Un-Ki;Kim, Dae-Han;Ryu, Hyang-Mi;Lee, Ju-Wook;Park, Seung-Yoon;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.234-242
    • /
    • 2014
  • In this study, gametotoxicity and embryotoxicity experiments using Hemicentrotus pulcherrimus were carried out to investigate the ecotoxicological effects of bisphenol A (BPA). We examined the effects of BPA on fertilization and normal embryogenesis at various concentrations (0, 300, 500, 800, 1000, and 1500 ppb). The results demonstrated that the fertilization rates were not changed. The normal embryogenesis rates were gradually decreased in a dose-dependent manner, and were significantly lowered following 800 ppb BPA treatment ($EC_{50}$=1056.1 ppb, 95% Cl=981.8~1163.9 ppb). The observed effective concentration and the lowest observed effective concentration of the normal embryogenesis rate were 500 ppb and 800 ppb, respectively. The embryos showed retarded development at each tested concentration, indicating the fact the embryonic development was delayed due to the increasing concentrations of BPA. Furthermore, we examined the expression of glutathione S-transferase (GST) mRNA at various concentrations of BPA in H. pulcherrimus. Interestingly, it was found that the expression level of GST mRNA was significantly increased in the experimental group exposed to BPA. Based on these results, we suggested that BPA at greater than 800 ppb has a toxic effect during the early embryonic stages of H. pulcherrimus, and GST mRNA may be used as a biomarker for risk assessment of BPA contamination.

Teratogenicity Study of SKI 2053R, a New Platinum Anticancer Agent, in Rabbits (새로운 백금착물 항암제 SKI 2053R의 토끼 최기형성시험)

  • 김종춘;김갑호;박종일;김형진;정문구
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.292-299
    • /
    • 1999
  • SKI 2053 R, cis-Malonato [(4R, 5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane] platinum(II), is a newly developed antitumor platinum complex derived from cisplatin. Preclinical studies suggest that it may have greater antitumor activity and lower toxicity than cisplatin. Effects of test agent on general toxicity of does and embryonic development of Fl fetuses were investigated in rabbits. Sixty eight New Zealand white rabbits were distributed among three treated groups and a control group. SKI 2053R was administered intravenously to pregnant rabbits from days 6 to 18 of gestation at dose levels of 0, 0.67, 2.0, or 6.0 mg/kg/day. The pregnant does were subjected to the caesarean section on day 28 of gestation. No treatment-related changes in clinical signs, body weight, food consumption, and necropsy findings were observed in all groups. Fl fetuses showed no changes related to the treatment of SKI 2053R, except that an increase in the incidence of skeletal variations were observed at 6.0 mg/kg. There were no signs of material toxicity or embryotoxicity at 0.67 and 2.0 mg/kg. The results show that the administration of 6.0 mg/kg SKI 2053R induces skeletal variations in fetuses and that the no observed adverse effect levels(NOAELS) of SKI 2053R are considered to be over 6.0 mg/kg for does and 2.0 mg/kg for Fl fetuses in rabbits.

  • PDF

Embryotoxic and Teratogenic Effects of Scolopendra Water Extract in Mice (오공(蜈蚣) 추출물의 태아 기형 및 모체 독성 마우스 시험)

  • Jeongmin, Lee;Jun-Ho, Song;Soong-In, Lee;Hyun Jun, Ki;In Sik, Shin;Sung-Ho, Kim;Changjong, Moon;Joong-Sun, Kim;Ji Hye, Lee
    • Herbal Formula Science
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2023
  • Objective : Scolopendra, a dried body of Scolopendra subspinipes mutilans, is one of Korean medicine. Several reports revealed that Scolopendra has therapeutic effects for arthritis, neuroinflammatory diseases and neuropathic pain. However, the fetal adaptive response or teratogenicity associated with administration of Scolopendra is unclear. Therefore, this study aimed to investigate the fetal toxicity effects that were induced following oral administration of Scolopendra water extract (SWE) in pregnant mice. Methods : The pregnant mice were administrated SWE at dosed of 0, 100, 500 and 1000 mg/kg/day during gestation day 0-18. The mortality, body weight and clinical signs of pregnant mice were observed throughout experimental period. Also, the mortality and malformations in foetus were examined. Results : No meaningful changes were observed in the mortality and clinical signs of pregnant mice between the normal control group and SWE administrated groups. Additionally, there are no significant changes in fetal mortalities, and malformations by SWE administration. conclusion : These results suggest that oral exposure to SWE during pregnancy at oral dosages up to 1000 mg/kg/day did not induce teratogenic toxicity in regard to fetal mortality and morphology.

Assessment of Embryotoxicity of 2-Bromopropane in ICR Mice

  • Kim, Jong-Choon;Shin, Dong-Ho;Kim, Sung-Ho;Oh, Ki-Seok;Kim, Hyeon-Yeong;Her, Jeong-Doo;Jiang, Cheng-Zhe;Chung, Moon-Koo
    • Toxicological Research
    • /
    • v.19 no.3
    • /
    • pp.227-234
    • /
    • 2003
  • 2-Bromopropane (2-BP), a halogenated propane analogue, is a substitute for chlorofluorocarbones (CFCs) which have a great potential to destroy the ozone layer and to warm the earth's environment. The present study was undertaken to evaluate the potential adverse effects of 2-BP on pregnant dams and embryo-fetal development after maternal exposure during the gestational days (GD) 6 through 17 in ICR mice. The test chemical was administered subcutaneously to pregnant mice at dose levels of 0, 313, 625 or 1,250 mg/kg/day. All dams were subjected to caesarean section on GD 18 and their fetuses were examined for external, visceral and skeletal abnormalities. In the 1,250 mg/kg group, maternal toxicity included an increase in the incidence of abnormal clinical signs and a decrease in the maternal body weight, body weight gain, and corrected body weight. Developmental toxicity included a decrease in the fetal body weight, a reduction in the placental weight, an increase in the fetal skeletal variation and ossification delay. There were no adverse effects on either pregnant dams or embryo-fetal development in the 313 and 625 mg/kg groups. These results suggest that a 12-day subcutaneous dose of 2-BP is embryotoxic at a maternally toxic dose (i.e., 1,250 mg/kg/day) in ICR mice. In the present experimental condition, the no-observed-adverse-effect level of 2-BP is considered to be 625 mg/kg/day for dams and embryo-fetuses, respectively.

Teratogenicity Evaluation of 2-Bromopropane Using Rat Whole Embryo Culture (랫드 전배아배양법을 이용한 2-Bromopropane의 최기형성 평가)

  • Kim Jong-Choon;Shin Dong-Ho;Kim Sung-Ho;Yang Young-Soo;Oh Ki-Seok;Jiang Cheng-Zhe;Chung Moon-Koo
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Recently, we have reported that the environmental pollutant 2-bromopropane (2-BP) induces a significant embryo-fetal developmental toxicity in rats. However, the cause of developmental toxicity and the relationship between maternal and developmental toxicities could not be elucidated because the developmental toxicity of 2-BP was observed only in the presence of maternal toxicity The in vitro teratogenicity study using whole embryo culture was carried out to understand the teratogenic properties and the possible mechanism of teratogenicity induced by 2-BP in rats. Rat embryos aged 9.5 days were cultured in vitro for 48 hrs at medium concentrations of 0, 1, 3, or 10 mg/ml of 2-BP. Embryos were evaluated for growth, differentiation, and morphological alterations at the end of the culture period. At 10 mg/ml, 2-BP caused a delay in the growth and differentiation of embryos and an increase in the incidence of morphological alterations, including altered yolk sac circulation, abnormal axial rotation, craniofacial hypoplasia, open neuropore, absent optic vesicle and kinked somites. At 3 mg/ml, only a delay in the growth and differentiation of embryos was observed. There were no adverse effects on embryonic growth and development at the concentration of 1 mg/ml. The results showed that the exposure of 2-BP to rat embryos results in a developmental delay and morphological alterations at dose levels of 3 mg/ml culture media or higher and that 2-BP can induce a direct developmental toxicity in rat embryos.

Optimal Conditions for the Embryonic Development of Mussel, Mytilus galloprovincialis (지중해담치, Mytilus galloprovincialis의 발생 최적조건)

  • Sung, Chan-Gyoung;Kim, Gi-Beum;Seo, Jin-Young;Lee, Chang-Hoon;Ryu, Tae-Kwon;Han, Gi-Myung;Choi, Jin-Woo;Kim, Yong-Hyun
    • The Korean Journal of Malacology
    • /
    • v.21 no.1
    • /
    • pp.25-31
    • /
    • 2005
  • The embryos of marine bivalves have been commonly used in bioassays for the quality assessment of marine environments. Although several standard protocols for developmental bioassay with bivalves have been already proposed, there have been few trials for applying these protocols in environmental assessment, or for developing new protocol with Korean species. So, there is a strong need to establish the standard bioassay protocols using bivalves commonly found in Korean waters. Prior to developing a new protocol, it is essential to know the optimum conditions for the reliable bioassay procedures. Here, we established the purpose of this study to determine the optimum bioassay conditions for successful development of a common mussel, Mytilus galloprovincialis. The conditions considered as critical for developmental bioassay, and determined in this study were; (1) temperature, (2) salinity, and (3) initial density of embryo. The optimal temperature for developmental bioassay of M. galloprovincialis was determined as $15^{\circ}C$. At this temperature, the required time for the embryo to become veliger larva was 48 hr. The acceptable range of salinity for the embryotoxicity test using M. galloprivincialis was from 30 to 35 psu, which was narrower than that of the natural habitat of adult populations. The optimum density of embryo at the beginning of bioassay was 100 embryos/ml. Over this density, the proportion of normally developed larvae decreased significantly. The results obtained in this study will serve as a basis for preparation of the standard bioassay protocol using embryo of M. galloprovincialis.

  • PDF

Teratogenicity Study of tert-Butyl Acetate in Rats (랫드에서 초산 제3부틸의 최기형성 시험)

  • Ahn, Tai-Hwan;Yang, Young-Su;Lee, Jong-Chan;Kang, Seong-Soo;Bae, Chun-Sik;Kim, Sung-Ho;Kim, Jong-Choon;Kim, Hyeon-Yeong;Chung, Yong-Hyun
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • tert-Butyl acetate is an organic solvent used for coatings, industrial cleaning, and surface treatment applications. This study investigated the potential adverse effects of tert-butyl acetate on pregnant dams and embryo-fetal development after maternal exposure on gestational days 6 through 19 in rats. The test chemical was administered to pregnant rats by gavage at dose levels of 0, 500, 1,000, 1,500, and 2,000 mg/kg/day. All dams were subjected to a caesarean section on day 20 of gestation and their fetuses were examined for any external, visceral, and skeletal abnormalities. At 2,000 mg/kg, treatment-related clinical signs, including piloerection, abnormal gait, decreased locomotor activity, loss of fur, reddish tear, anorexia, nasal discharge, vocalization and coma, were observed in a dose-dependent manner. All dams died between the 2nd day and 5th day of treatment due to a severe systemic toxicity. At 1,500 mg/kg, minimal maternal toxicity including an increase in the incidence of decreased locomotor activity and loss of fur, and an increase in the weights of adrenal glands and liver was observed. On the contrary, no significant adverse effect on the embryo-fetal development was detected. There were no adverse effects on either pregnant dams or embryo-fetal development at <1,000 mg/kg. These results show that a 14-day repeated oral dose of tert-butyl acetate in rats caused a minimal maternal toxicity including increases in the incidence of clinical signs and the weights of adrenal glands and liver, but no embryotoxicity and teratogenicity at 1,500 mg/kg/day. Under these experimental conditions, the no-observed-adverse-effect level (NOAEL) of tert-butyl acetate is estimated to be 1,000 mg/kg per day for dams and 1,500 mg/kg per day for embryo-fetal development.

Development Toxicity Evaluation (랫드에서 표준 및 사료제한 시험에 의한 fluoroquinolone 항균제 DW-116의 발생독성평가)

  • 김종춘;윤효인;이희복;한상섭;정문구
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.447-456
    • /
    • 2001
  • We have recently demonstrated that the fluoroquinolone antibacterial DW-116 caused a significant developmental toxicity in rats. The present study was conducted to determine whether the development toxicity induced by DW-116 treatment was the result of malnutrition fro reduced food intake or the direct effects of test chemical on conceptuses. The test chemical was administered by gavage to pregnant rats from gestational days 6 through 16 at dose levels of 0 and 500 mg/kg/day. A pair-feeding study was also performed in which the pregnant rats received the same amount of diet consumed by the DW-116-treated pregnant rats. All dams were subjected to caesarean section on day 20 of gestation and their fetuses were examined for examined for external, visceral, and skeletal abnormalities. In this treatment group, the maternal toxicities included increased abnormal clinical signs, decreased maternal body weight, suppressed body weight gain during treatment and posttreatment periods, and reduced food intake. The significant developmental toxicities included increased fetal deaths, decreased live fetuses, reduced fetal body weight and placental weight, increased incidence of fetal abnormalities, and increased fetal ossification delay. In this pair-fed group, however, slight maternal toxicities including decreased body weight and suppressed body weight gain during treatment period were observed in comparison with the control group, and minimal development toxicities including reduced fetal and placental weights and increased fetal ossification delay were found. The number of fetal deaths and live fetuses, and the incidences of malformed fetuses and litters with affected fetuses were comparable to the control values. Based on the results, it could be concluded that the development toxicity observed in the treatment group is attributable to the direct effects of Dw-116 treatment, but not to the maternal malnutrition from reduced food consumption during pregnancy.

  • PDF