• Title/Summary/Keyword: embryonic gonads

Search Result 14, Processing Time 0.023 seconds

Examination Of The Migratory Ability Of Primordial Germ Cells From Embryonic Gonads At Different Developmental Stages In Quail

  • Kim, Duk-Kyung;Park, Tae ub;Lee, Yong-Mok;Kim, Mi-Ah;Kim, Gwi-Sook;Kim, Ki-Dong;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.11a
    • /
    • pp.75-77
    • /
    • 2000
  • Retaining migratory activity is a prerequisite for the manipulation and use of PGCs. This study was conducted to examine whether migratory activity is retained in the primordial germ cells(PGCs) from gonads at the later embryonic developmental stage. In the present study, gonads were dissected from 5-, 6- and 10-day-old quail embryos and treated with trypsin-EDTA for the degradation of gonadal tissue. Gonadal PGCs (gPGCs) were purified by Ficoll density gradient centrifugation and labeled with PKH26 fluorescent dye. The PKH26-labeled gPGCs were microinjected into the blood vessels of recipient quail embryo. After further incubation of 3 days, the manipulated recipients were embedded in paraffin and sectioned. The gPGCs were detected by their fluorescence under the fluorescent microscopy and the confocal laser microscopy. As a result, 10-day-old quail gPGCs as well as 5-and 6-day-old gPGCs, could migrate to recipient embryonic gonads and settle down. These results suggest that the 10-day-old gPGCs have the properties of circulating PGCs at early stage. Therefore the PGCs from 10-day old embryonic gonads can be used for the tools of genetic manipulation.

  • PDF

Studies on the Migratory Ability of Primordial Germ Cells from Embryonic Gonads at Different Developmental Stages in Quail (메추리의 발달 중 배자 생식선에서 분리한 원시생식세포의 이동능에 대한 연구)

  • D. K. Kim;G. H. Song;J. N. Kim;D. K. Jeong;K. D. Kim
    • Korean Journal of Poultry Science
    • /
    • v.28 no.1
    • /
    • pp.69-76
    • /
    • 2001
  • Avian primordial germ cells (PGCs) originate from the epiblast and appear in the germinal crescent. These PGCs enter the developing blood vessels during stage 10∼12 (H&H), circulate in the blood stream, migrate into the developing gonadal anlage and differentiate into germ cells. However, it is not clear until when the migratory ability of PGC is maintained. This study was conducted to examine whether migratory ability is present in PGCs from the gonad at later embryonic developmental stages. In the present study, gonads were dissected from 5-, 6- and 10-day old quail embryos and treated with trypsin-EDTA. Gonadal PGCs (gPGCs) were purified by Ficoll-density-gradient-centrifugation and labeled with PKH26 fluorescent dye. The PKH26-labeled gPGCs were microinjected into the blood vessel of the recipient quail embryo. Manipulated recipients were incubated for 3 days, embedded in paraffin and sdctioned. The foreign gPGCs were detected by fluorescent and confocal laser microscopy. As a result, quail gPGCs, from 10, 6 and 5 day old embryos could migrate through the recipient blood stream at early stage and settle in the gonads. Thus, results suggest that gPGCs from upto 10-day old embryos keep properties seen in circulating PGC. Therefore, the PGCs of 10-day old embryonic gonads can be used for the tools of genetic manipulation.

  • PDF

Proteome Analysis of Chicken Embryonic Gonads: Identification of Major Proteins from Cultured Gonadal Primordial Germ Cells

  • Lee, Sang-In;Han, Beom-Ku;Park, Sang-Hyun;Kim, Tae-Min;Sin, Sang-Soo;Lee, Young-Mok;Kim, Hee-Bal;Lim, Jeong-Mook;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.66-67
    • /
    • 2005
  • The domestic chicken (Gallus gallus) is an important model for research in developmental biology because its embryonic development occurs in ovo. To examine the mechanism of embryonic germ cell development, we constructed proteome map of gonadal primordial germ cells (gPGC) from chicken embryonic gonads. Embryonic gonads were collected from 500 embryos at 6 day of incubation, and the gPGC were cultured in vitro until colony formed. After 7-10 days in cultured gPGC colonies were separated from gonadal stroma cells (GSCs). Soluble extracts of cultured gPGCs were then fractionated by two-dimensional gel electrophoresis (pH 4-7). A number of protein spots, including those that displayed significant expression levels, were then identified by use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry and LC-MS/MS. Of the 89 gPGC spots examined, 50 yielded mass spectra that matched avian proteins found in on-line databases. Proteome map of thistype will serve as an important reference for germ cell biology and transgenic research.

  • PDF

Migration Activity of Chicken Gonadal Primordial Germ Cells (gPGCs) and Post-transfer Localization of LacZ-transfected gPGCs in the Embryonic Gonads

  • Jeong, D.K.;Han, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1227-1231
    • /
    • 2002
  • A powerful tool for chicken transgenesis could be established by employing a germline chimera production through primordial germ cell transplantation. This study was conducted to examine whether foreign gene-transfected gonadal primordial germ cells (gPGCs) have a migration activity into the gonad after transfer to recipient embryos. In Experiment 1, gPGCs of Korean Ogol Chicken were retrieved from 5.5-day-old embryos and subsequently transferred to the dorsal aorta of 2.5-day-old White Leghorn embryos after being labeled with PKH26 fluorescent dye. To confirm migration activity after transplantation, recipient embryos were sacrificed and examined on 3 days after transfer. Sex determination was concomitantly undertaken to examine whether sex of recipient embryos could affect the migration activity of gPGCs. All of embryonic gonads examined showed positive signals with PKH26 fluorescence and W-chromosome specific band by polymerase chain reaction (PCR) was detected in male embryos when gPGCs with ZW chromosome were transferred to recipient embryos. In Experiment 2, retrieved gPGCs were transfected with LacZ gene-containing cytomegalovirus promoter ($pCMV{\beta}$) by electroporation and subsequently transferred to recipient embryos. LacZ gene expression was identified in the gonads of 6 or 10-day-old recipient embryos and hatched-chicks. A total of 20 embryos and 12 hatched-chicks were examined and 11 of them (10 embryos and one hatched chicken; 11/32=34.4%) expressed $\beta$-galactosidase, a marker substance of LacZ gene. The results of this study demonstrated that foreign gene-transfected gPGCs can migrate and settle down into the gonad after being transferred into the blood vessel of the recipient embryos. This established technique will contribute to developing a peer biotechnology for transgenic chicken.

Possible Production of Transgenic Chicken by Transferring Foreign Genes and Germ Cells (외부유전자의 전이에 의한 배아세포와 트란스젠닉 가금 생산의 가능성)

  • Fujihara, N.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.2
    • /
    • pp.119-129
    • /
    • 1999
  • In recent years, numerous researches have been carried out in author's laboratory to develop several kinds of methods for producing transgened chicken, leaving a lot of new findings. Some of them are very useful to search for new approaches necessary to improve the efficiency of hatchability and the survival rate of developing trasgened embryos. The results obtained hitherto might be summarized as follows: (1) foreign gene(Lac Z/ Miw Z) introduced into blastodermal cells of developing embryos was successfully transferred to embryos, leading to the production of primordial germ cells(PGCs) carrying foreign DNA. However, hatched hickens failed to show the incorporation of introduced gene into the gonads. (2) When foreign gene was introduced into germinal crescent region (GCR), the gene was also efficiently incorporated into germ cells, resulting in the production of transgened chickens(offspring) which produced fruther offspring having foreign gene in the gonads. In this case, 2nd and 3rd generations of chickens were obtained through the reproduction of transgened birds. (3) In another way, the gene was injected into blood vessels of developing embryos at stage 13∼15, creating PGCs having foreign gene, and produced some transgened chickens. In this work, the PGCs were transfered between embryos, resulting in the production of transgenic chickens. (4) in these experiments, PGCs were effectively employed for producing transgenic birds, developing some kinds of chimeric chickens from homo- or hetero-sexual transfer of the PGCs from embryos. This means that the gonads from donor PGCs developed in some degree to the stage of hatching. However, these gonads showed slightly abnormal tissues similar to ovotestis like organs through histological examination. (5) Avian Leukosis Virus(ALV) induced B cell line(DT40) successfully carried foreign genes into chicken embryos, suggesting the possibility of the cells as a vector in this field of study in the future. (6) Inter-embryonic transfer of the PGCs also gave us some.

  • PDF

The capabilities of migration and differentiation of female primordial germ cells after transferring to male embryos

  • Lee, Young-Mok;Kim, Mi-Ah;Shin, Sang-Su;Park, Tas-Sub;Park, Hyun-Jeong;Han, Jae-Yong
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.74-76
    • /
    • 2001
  • Comparing to mammals, male bird has the homozygote ZZ and female has the heterozygote n. Therefore, the sex of fertilized eggs is defined by female chromosome constitution. Although this cytological observation had been established, the molecular and cellular mechanism of germ cell differentiation are essentially unknown in aves. Especially, the differentiation of germ cells in mixed-sex chimeras has not yet been clearly elucidated. Primordial germ cells, which are the progenitors of sperm or egg after sexual maturity, firstly arise in the epiblast and migrate to embryonic gonads through the blood vessel. During the embryo development, these PGCs differentiate in the pathway of mate or female, respectively and develop the sperm or egg cells after sexual maturity. In this paper, we confirmed that the female PGCs could migrate into the recipient male gonads after transferring and differentiate into germ cells in the embryonic stages. The primordial germ cells were isolated from the female embryonic gonads of 5.5-day-old incubation and re-injected into the male recipient embryos of 2-day-old incubation, which produced mixed-sex chimera in the germline. The finding in this study demonstrated the ability of migration and differentiation of gonadal primordial germ cells in mixed-sex chicken.

  • PDF

ONTOGENETIC ASPECTS OF STEROIDOGENESIS BY GONADS OF DUCKS AND ITS ROLE IN SEX DIFFERENTIATION

  • Doi, O.;Iwasawa, A.;Nakamura, T.;Tanabe, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 1994
  • To elucidate the relationship between steroidogenesis and sex differentiation in the duck, plasma, testicular and ovarian testosterone, estradiol-$17{\beta}$ and progesterone concentration in male and female embryo of day 11 to 27 (just before hatching) of incubation and in 1- to 7-day-old male and female duckling were investigated by radioimmunoassays. Plasma estradiol-$17{\beta}$ concentration in female embryos declined from very high at days 11 and 15 of incubation and remained at low levels after hatching. Male plasma estradiol-$17{\beta}$ concentration were always lower than those of the female throughout this period. Plasma testosterone and progesterone concentrations in both sexes were low during the embryonic stage, but then increased to peaks 3 days and 1 day after hatching, respectively. Estradiol-$17{\beta}$ contents were much higher in the left ovary than the right ovary or testes throughout the experimental period. The estradiol-$17{\beta}$ content of the left ovary was very high at day 15 of incubation, and decreased gradually thereafter. Both in right ovary and testes, estradiol-$17{\beta}$ contents were always low. Testosterone and progesterone contents in the left ovary were low from day 11 to 23 of incubation, and reached a peak 1 day after hatching. Progesterone content in the right ovary and testes were low levels over time period examined. Testosterone and progesterone contents were much higher in the left ovary than the right ovary and testes. The present results clearly demonstrate that the capacity of the embryonic left ovary of duck to synthesize estradiol-$17{\beta}$ and testosterone is much higher than that of the embryonic testis. It is suggested that estrogen secreted from the embryonic ovary earlier than day 15 of incubation has an important role in female sexual differentiation in the duck, and the sex of the avian species is basically male with homozygous sex chromosome (ZZ).

Expression and Function of CTNNB1 in the Development of Avian Reproductive System

  • Bae, Seung-Min;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Beta-catenin (CTNNB1, catenin (cadherin-associated protein), beta 1) is involved in various biological processes, including embryogenesis, tumorigenesis, angiogenesis and progression of metastasis. CTNNB1, as a multifunctional and oncogenic protein, has important roles in adhesion between Sertoli cells through an N-cadherin-dependent manner and in various cancer types through its over-activation. In addition, CTNNB1 can interact with estrogen/estrogen receptor alpha complex, which regulates the transcription of WNT (wingless-type MMTV integration site family)/CTNNB1 target genes. Recently, we investigated the functional roles and expression pattern of CTNNB1 during the morphological changes of embryonic gonads of chickens and the estrogen-dependent regulation of CTNNB1 in oviduct development and potential functions as a biomarker of CTNNB1 in human epithelial ovarian cancer using the chicken as a biological research model. Therefore, in this review, we provide a new insight of potential role of CTNNB1 in the development of the female reproductive tract during early embryogenesis and ovarian carcinogenesis of laying hen models.

Unusual malignant neoplasms of ovary in children: two cases report

  • Ghribi, Ali;Bouden, Aicha;Gasmi, Manef;Hamzaoui, Mourad
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.107-111
    • /
    • 2016
  • Sex cord tumors with annular tubules are known to originate from the sex cord of embryonic gonads that synthesize Sertoli cells, Leydig cells, granulosa cells, and theca cells of the ovarian stroma, while ovarian small cell carcinoma of the hypercalcemic type is a type of neuroendocrine tumor. Both these tumors are uncommon, potentially malignant neoplasms in children. We report the case of a sex cord tumor with annular tubules in an 11-year-old girl and a case of small cell carcinoma of the hypercalcemic type in a 10-year-old girl. We also discuss the prognosis and management of these tumors.

Non-Viral Transgenesis via Direct In Ovo Lipofection in Quail (비바이러스 In Ovo 직접주입법에 의한 메추리 형질전환 시스템)

  • Park, Tae Sub;Han, Jae Yong
    • Korean Journal of Poultry Science
    • /
    • v.42 no.3
    • /
    • pp.239-245
    • /
    • 2015
  • Transgenic animals have been widely used for developmental biology studies, as disease models, and even in industry such as transgenic bioreactor animals. For transgenic birds, quail has the great advantages of small body size, short generation time, and frequent egg production. To date, retroviral or lentiviral transduction has been used to generate transgenic quail for various purposes. However, the efficiency of transgenic offspring production with these methods is relatively low and viral vector usage has safety issues. Unfortunately, non-viral transgenesis has not been established in quail due to a deficiency of stem cell and germ cell culture systems. In this study, we established a direct in ovo lipofection method that could be used to create transgenic quail without germline-competent cells or viruses. To optimize the injection stage during embryo development, the liposome complex (containing piggyBacCMV-GFP and transposase plasmids) was introduced into an embryonic blood vessel at 50 hr, 55 hr or 60 hr. GFP expression was detected in various tissues (heart, kidney, liver and stomach) on day 12 of incubation under a fluorescence microscope. Additionally, GFP-positive cells were detected in the recipient embryonic gonads. In conclusion, the direct in ovo lipofection method with the piggyBac transposon could be an efficient and useful tool for generating transgenic quail.