• Title/Summary/Keyword: embryonic germ cell

Search Result 81, Processing Time 0.026 seconds

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Production of chickens with green fluorescent protein-knockin in the Z chromosome and detection of green fluorescent protein-positive chicks in the embryonic stage

  • Kyung Soo Kang;Seung Pyo Shin;In Su Ha;Si Eun Kim;Ki Hyun Kim;Hyeong Ju Ryu;Tae Sub Park
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.973-979
    • /
    • 2023
  • Objective: The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which is the most efficient and reliable tool for precisely targeted modification of the genome of living cells, has generated considerable excitement for industrial applications as well as scientific research. In this study, we developed a gene-editing and detection system for chick embryo sexing during the embryonic stage. Methods: By combining the CRISPR/Cas9 technical platform and germ cell-mediated germline transmission, we not only generated Z chromosome-targeted knockin chickens but also developed a detection system for fluorescence-positive male chicks in the embryonic stage. Results: We targeted a green fluorescent protein (GFP) transgene into a specific locus on the Z chromosome of chicken primordial germ cells (PGCs), resulting in the production of ZGFP-knockin chickens. By mating ZGFP-knockin females (ZGFP/W) with wild males (Z/Z) and using a GFP detection system, we could identify chick sex, as the GFP transgene was expressed on the Z chromosome only in male offspring (ZGFP/Z) even before hatching. Conclusion: Our results demonstrate that the CRISPR/Cas9 technical platform with chicken PGCs facilitates the production of specific genome-edited chickens for basic research as well as practical applications.

Migration Activity of Chicken Gonadal Primordial Germ Cells (gPGCs) and Post-transfer Localization of LacZ-transfected gPGCs in the Embryonic Gonads

  • Jeong, D.K.;Han, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1227-1231
    • /
    • 2002
  • A powerful tool for chicken transgenesis could be established by employing a germline chimera production through primordial germ cell transplantation. This study was conducted to examine whether foreign gene-transfected gonadal primordial germ cells (gPGCs) have a migration activity into the gonad after transfer to recipient embryos. In Experiment 1, gPGCs of Korean Ogol Chicken were retrieved from 5.5-day-old embryos and subsequently transferred to the dorsal aorta of 2.5-day-old White Leghorn embryos after being labeled with PKH26 fluorescent dye. To confirm migration activity after transplantation, recipient embryos were sacrificed and examined on 3 days after transfer. Sex determination was concomitantly undertaken to examine whether sex of recipient embryos could affect the migration activity of gPGCs. All of embryonic gonads examined showed positive signals with PKH26 fluorescence and W-chromosome specific band by polymerase chain reaction (PCR) was detected in male embryos when gPGCs with ZW chromosome were transferred to recipient embryos. In Experiment 2, retrieved gPGCs were transfected with LacZ gene-containing cytomegalovirus promoter ($pCMV{\beta}$) by electroporation and subsequently transferred to recipient embryos. LacZ gene expression was identified in the gonads of 6 or 10-day-old recipient embryos and hatched-chicks. A total of 20 embryos and 12 hatched-chicks were examined and 11 of them (10 embryos and one hatched chicken; 11/32=34.4%) expressed $\beta$-galactosidase, a marker substance of LacZ gene. The results of this study demonstrated that foreign gene-transfected gPGCs can migrate and settle down into the gonad after being transferred into the blood vessel of the recipient embryos. This established technique will contribute to developing a peer biotechnology for transgenic chicken.

Deficiency of Bloom's Syndrome Protein Causes Hypersensitivity of C. elegans to Ionizing Radiation but Not to UV Radiation, and Induces p53-dependent Physiological Apoptosis

  • Kim, Yun Mi;Yang, Insil;Lee, Jiyeung;Koo, Hyeon-Sook
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.228-234
    • /
    • 2005
  • Caenorhabditis elegans him-6 mutants, which show a high incidence of males and partial embryonic lethality, are defective in the orthologue of human Bloom's syndrome protein (BLM). When strain him-6(e1104) containing a missense him-6 mutation was irradiated with ${\gamma}$-rays during germ cell development or embryogenesis, embryonic lethality was higher than in the wild type, suggesting a critical function of the wild type gene in mitotic and pachytene stage germ cells as well as in early embryos. Even in the absence of ${\gamma}$-irradiation, apoptosis was elevated in the germ cells of the him-6 strain and this increase was dependent on a functional p53 homologue (CEP-1), suggesting that spontaneous DNA damage accumulates due to him-6 deficiency. However, induction of germline apoptosis by ionizing radiation was not significantly affected by the deficiency, indicating that HIM-6 has no role in the induction of apoptosis by exogenous DNA damage. We conclude that the C. elegans BLM orthologue is involved in DNA repair in promeiotic cells undergoing homologous recombination, as well as in actively dividing germline and somatic cells.

Differentiation of Human Embryonic Stem Cells into Germ Cell and Culture Condition for Single Embryonic Stem Cells Dissociated by Enzyme (인간 배아줄기세포의 생식세포로의 분화 및 효소에 의해 분리된 단일줄기세포 배양조건)

  • Chi, Hee-Jun;Choi, Soon-Young;Chung, Da-Yeon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • Objective: The present study was carried out to induce differentiation of human embryonic stem cells (hESCs) into germ cells and to establish a culture condition for single hESCs dissociated by enzyme. Methods: Embryonic body (EB) was formed by hanging drop culture for 3 days from hESCs colony. The EBs were cultured in the medium supplemented with retionic acid (RA) or/and bone morphogenetic protein-4 (BMP4) for 14 days to differentiate into germ cells. Germ cell specific markers, c-kit and VASA were used for immunohistochemistry of EB. Human ESCs colonies were dissociated into single cells by Collagenase, Tryple and Accutase, and then colony formation rate of the single cells was examined. Rho-associated kinase inhibitor (ROCK inhibitor, Y27632) was added into the culture medium of single cells to reduce the apoptotic damage during the dissociation. Results: Single cells dissociated with Tryple or Accutase showed higher colony formation rates compared to the cells dissociated with Collagenase. Seeding of $5{\times}10^3$ cells/well (4 well dish) was efficient to obtain high colony formation rate compared to other concentrations of seeding cell. Addition of Y27632 significantly increased the colony formation rate of the single cells dissociated by Tryple. Immunohistochemistry of EB with c-kit and VASA markers showed a weak fluorescence signals compared to the signals from the testicular tissue. Conclusion: Dissociation with Tryple was useful to obtain healthy single cells and addition of Y27632 was beneficial for survival and colony formation of the single cells. Unlike other studies, we just observed a dim fluorescence staining of the germ cell markers, probably caused by the short-term culture for the differentiation of EB compared to other studies.

Stem cells and reproduction

  • Lee, Yeonmi;Kang, Eunju
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.482-489
    • /
    • 2019
  • Reproductive biotechnology has developed rapidly and is now able to overcome many birth difficulties due to infertility or the transmission of genetic diseases. Here we introduce the next generation of assisted reproductive technologies (ART), such as mitochondrial replacement technique (MRT) or genetic correction in eggs with micromanipulation. Further, we suggest that the transmission of genetic information from somatic cells to subsequent generations without gametes should be useful for people who suffer from infertility or genetic diseases. Pluripotent stem cells (PSCs) can be converted into germ cells such as sperm or oocytes in the laboratory. Notably, germ cells derived from nuclear transfer embryonic stem cells (NT-ESCs) or induced pluripotent stem cells (iPSCs) inherit the full parental genome. The most important issue in this technique is the generation of a haploid chromosome from diploid somatic cells. We hereby examine current science and limitations underpinning these important developments and provide recommendations for moving forward.

Small Molecules that Potentiate Neuroectodermal Differentiation of Mouse Embryonic Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.32-40
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have enormous potential in the biomedical sciences because they can grow continuously and differentiate into any kind of cell in the body. However, for future application in regenerative medicine, it is still a challenge to control the differentiation of PSCs without using genetic materials. To control the differentiation of PSCs, small molecules might be the best substitute for genetic materials considering the following advantages: small size, which enables penetration of plasma membrane; easy-to-modify structure; and low chance of genetic recombination in treated cells. Herein, we introduce small molecules that induce the neuroectodermal differentiation of mouse embryonic stem cells (ESCs). The small molecules were identified via ESC-based consecutive screenings of small-molecule libraries composed of 324 natural compounds or 93 selected drugs. The natural compounds discovered in the first screening were used to select 93 structurally similar drugs out of 1,200 approved drugs. In the second screening, among the 93 compounds, we found 4 drugs that induced the neuroectodermal differentiation of ESCs. These drugs were progesteroneor corticoid-derivatives. Our results suggest that small molecules targeting the progesterone receptor or glucocorticoid receptor could be used as chemical tools to induce the differentiation of PSCs into a specific germ lineage.

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Primary mediastinal endodermal sinus tumor [yolk sac tumor]: report of a case (원발성 종격동 내배엽동종 [난황난종]: 1 치험례 보)

  • 장병철
    • Journal of Chest Surgery
    • /
    • v.17 no.3
    • /
    • pp.497-504
    • /
    • 1984
  • The malignant germ cell tumor found in the gonad can originate in the anterior mediastinum. Endodermal sinus tumor[Yolk sac tumor] is a kind of malignant germ cell tumor and is derived from extra-embryonic mesoderm. We experienced a case of primary mediastinal endodermal sinus tumor occurred in 22 year old male patient. His chief complaint was anterior chest pain for 2 days. The tumor located in the anterior mediastinum and invaded upper lobe of the deft lung and pericardium. A left upper lobe resection including phrenic nerve and pericardium was performed and the tumor in the anterior mediastinum was excised. The patient has been treated with combination chemotherapy[Cis-platinum, Vincristine, Actinomycin-D, & Cyclophosphamide} and followed up for 4 months with partial remission.

  • PDF

Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells

  • Shin, Dong-Hyuk;Lee, Jeoung-Eun;Eum, Jin Hee;Chung, Young Gie;Lee, Hoon Taek;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2017
  • Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.