• Title/Summary/Keyword: embedded system integration

Search Result 103, Processing Time 0.021 seconds

A Dynamic Service Binding Framework for Embedded Devices (임베디드 장치를 위한 동적 서비스 연결 프레임워크)

  • Yeom, Gwy-Duk;Lee, Jeong-Geum
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.117-124
    • /
    • 2007
  • In this paper we present a translation lookaside buffer (TLB) system with low power consumption for embedded processors. The proposed TLB is constructed as multiple banks, each with an associated block buffer and a corresponding comparator. Either the block buffer or the main bank is selectively accessed on the basis of two bits in the block buffer (tag buffer). Dynamic power savings are achieved by reducing the number of entries accessed in parallel, as a result of using the tag buffer as a filtering mechanism. The performance overhead of the proposed TLB is negligible compared with other hierarchical TLB structures. For example, the two-cycle overhead of the proposed TLB is only about 1%, as compared with 5% overhead for a filter (micro) TLB and 14% overhead for a same structure without continuos accessing distinction algorithm. We show that the average hit ratios of the block buffers and the main banks of the proposed TLB are 95% and 5% respectively. Dynamic power is reduced by about 95% with respect to with a fully associative TLB, 90% with respect to a filter TLB, and 40% relative to a same structure without continuos accessing distinction algorithm.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Precision time sync. HW/SW platform for power system protection (전력시스템 보호를 위한 정밀 시각 동기 적용 HW/SW 플랫폼 기술)

  • Nam, Kyung-Deok;Son, Kyu-Jung;Chang, Tae-Gyu;Kang, Sang-Hee
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1036-1043
    • /
    • 2018
  • This paper presented future power system protection technologies through the HW/SW integration platform with IEC 61850 and IEEE c37.238 standards. To determine the implementation performance of the integrated platform, an example of EVM (Evaluation Module) was constructed to satisfy the standards. The platform has been identified as a future power system integrated IED(Intelligent Electronic Device) HW/SW technology that meets the level of error required by the time sync standard and the level of delay required by protecting the power system.

Fault Injection Based Indirect Interaction Testing Approach for Embedded System (임베디드 시스템의 결함 주입 기반 간접 상호작용 테스팅 기법)

  • Hossain, Muhammad Iqbal;Lee, Woo Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.9
    • /
    • pp.419-428
    • /
    • 2017
  • In an embedded system, modules exchange data by interacting among themselves. Exchanging erroneous resource data among modules may lead to execution errors. The interacting resources produce dependencies between the two modules where any change of the resources by one module affects the functionality of another module. Several investigations of the embedded systems show that interaction faults between the modules are one of the major cause of critical software failure. Therefore, interaction testing is an essential phase for reducing the interaction faults and minimizing the risk. The direct and indirect interactions between the modules generate interaction faults. The direct interaction is the explicit call relation between the modules, and the indirect interaction is the remaining relation that is made underneath the interface that possesses data dependence relationship with resources. In this paper, we investigate the errors that are based on the indirect interaction between modules and introduce a new test criterion for identifying the errors that are undetectable by existing approaches at the integration level. We propose a novel approach for generating the interaction model using the indirect interaction pattern and design test criteria that are based on different interaction errors to generate test cases. Finally, we use the fault injection technique to evaluate the feasibility and effectiveness of our approach.

Effective SoC Architecture of a VDP for full HD TVs (Full HD TV를 위한 효율적인 VDP SoC 구조)

  • Kim, Ji-Hoon;Kim, Young-Chul
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • This Paper proposes an effective SoC hardware architecture implementing a VDP for Full HD TVs. The proposed architecture makes real time video processing possible with supporting efficient bus architecture and flexible interface. Video IP cores in the VDP are designed to provide a high quality of improved image enhancement function. The Avalon interface is adopted to guarantee real-time capability to IPs as well as SoC integration. This leads to reduced design time and also enhanced designer's convenience due to the easiness in IP addition, deletion, and revision for IP verification and SoC integration. The embedded software makes it possible to implement flexible real-time system by controlling setting parameter details and data transmitting schemes in real-time. The proposed VDP SoC design is implemented on Cyclon III SoPC platform. The experimental results show that our proposed architecture of the VDP SoC successfully provides required quality of Video image by converting SD level input to Full HD level image.

  • PDF

Pseudolite/Ultra-low-cost IMU Integrated Robust Indoor Navigation System Through Real-time Cycle Slip Detection and Compensation

  • Kim, Moon Ki;Kim, O-Jong;Kim, Youn Sil;Jeon, Sang Hoon;No, Hee Kwon;Shin, Beom Ju;Kim, Jung Beom;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • In recent years, research has been actively conducted on the navigation in an indoor environment where Global Navigation Satellite System signals are unavailable. Among them, a study performed indoor navigation by integrating pseudolite carrier and Inertial Measurement Unit (IMU) sensor. However, in this case, there was no solution for the cycle slip occurring in the carrier. In another study, cycle slip detection and compensation were performed by integrating Global Positioning System (GPS) and IMU in an outdoor environment. However, in an indoor environment, cycle slip occurs more easily and frequently, and thus the occurrence of half cycle slip also increases. Accordingly, cycle slip detection based on 1 cycle unit has limitations. Therefore, in the present study, the aforementioned problems were resolved by performing indoor navigation through the integration of pseudolite and ultra-low-cost IMU embedded in a smartphone and by performing half cycle slip detection and compensation based on this. In addition, it was verified through the actual implementation of real-time navigation.

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.

System-Driven Approaches to 3D Integration

  • Beyne Eric
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2005.09a
    • /
    • pp.23-34
    • /
    • 2005
  • Electronic interconnection and packaging is mainly performed in a planar, 2D design style. Further miniaturization and performance enhancement of electronic systems will more and more require the use of 3D interconnection schemes. Key technologies for realizing true 3D interconnect schemes are the realization of vertical connections, either through the Si-die or through the multilayer interconnect with embedded die. Different applications require different complexities of 3D-interconnectivity. Therefore, different technologies may be used. These can be categorized as a more traditional packaging approach, a wafer-level-packaging, WLP ('above' passivation), approach and a foundry level ('below' passivation) approach. We define these technologies as respectively 3D-SIP, 3D-WLP and 3D-SIC. In this paper, these technologies are discussed in more detail.

  • PDF

The Realization of Load Flow Under Graphics Interface II (그래픽 인터페이스를 통한 조류계산구현 II)

  • Hawing, In-Jun;Kim, Kun-Joong;Park, Hyun-Shin;Shin, Man-Chul;Oh, Sung-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.211-213
    • /
    • 2005
  • In this Paper, our goal is program's completion which has graphical user interface. During that profess we will implement graphic module and apply It for network devices. We will construct integration system between embedded modules and window's components. In conclusion this paper explain you how to make graphical simulator in electrical engineering.

  • PDF

Design and Implementation for Integrated Development Environment Interface Based on RAPID (RAPID 기반의 통합개발환경 인터페이스 설계 및 구현)

  • Lee, Jeong-Bae;Seo, Il-Soo
    • Convergence Security Journal
    • /
    • v.9 no.2
    • /
    • pp.59-69
    • /
    • 2009
  • In this paper, Integrated development environments interface was designed and implemented for the integrated development environments. By using connection interface, Integration between physical prototyping and virtual prototyping which has different characteristics each other could be possible. Specially, good performance of the connection interface was showed by testing result of operation implemented.

  • PDF