• Title/Summary/Keyword: embedded sensor networks

Search Result 111, Processing Time 0.026 seconds

Sensor Data Management using Database (데이터베이스를 활용한 센서 데이터 관리)

  • Kweon, Dae-Gon;Choi, Sin-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1608-1613
    • /
    • 2009
  • All kinds of equipment which used an embedded system is developed, and these are used as to an actual life in developments regarding an embedded field in a lot of sections. Also, we can collect data from all kinds of sensors through wireless sensor networks, look by real time data collected could be brought if only through embedded system. In this paper we present a plan which improve the capabilities of embedded system only act as a gateway by installing embedded database in an embedded system for the sensing data management that was transmitted by radio from sensor nodes. In other words, by installing an embedded database to store and manage data by sensing data can be reduced the transmission frequency to communicate with a host and by performing the filtering program in embedded system and then by transmitting only valid data to the host can be increase the reliability of the analysis results based on data collected.

Environmental Monitoring System for Base Station with Sensor Node Networks

  • Hur, Chung-Inn;Kim, Hwan-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.258-262
    • /
    • 2009
  • A Practical application of environmental monitoring system based on wireless sensor node network with the core of embedded system STR711FR2 microprocessor is presented in the paper. The adaptable and classifiable wireless sensor node network is used to achieve the data acquisition and multi-hop wireless communication of parameters of the monitoring base station environment including repeaters. The structure of the system is proposed and the hardware architecture of the system is designed, and the system operating procedures is proposed. As a result of field test, designed hardware platform operated with 50kbps bit rate and 5MHz channel spacing at 2040Hz. The wireless monitoring system can be managed and swiftly retreated without support of base station environmental monitoring.

Intelligent Lighting Control using Wireless Sensor Networks for Media Production

  • Park, Hee-Min;Burke, Jeff;Srivastava, Mani B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.423-443
    • /
    • 2009
  • We present the design and implementation of a unique sensing and actuation application -- the Illuminator: a sensor network-based intelligent light control system for entertainment and media production. Unlike most sensor network applications, which focus on sensing alone, a distinctive aspect of the Illuminator is that it closes the loop from light sensing to lighting control. We describe the Illuminator's design requirements, system architecture, algorithms, implementation and experimental results. The system uses the Illumimote, a multi-modal and high fidelity light sensor module well-suited for wireless sensor networks, to satisfy the high-performance light sensing requirements of entertainment and media production applications. The Illuminator system is a toolset to characterize the illumination profile of a deployed set of fixed position lights, generate desired lighting effects for moving targets (actors, scenic elements, etc.) based on user constraints expressed in a formal language, and to assist in the set up of lights to achieve the same illumination profile in multiple venues. After characterizing deployed lights, the Illuminator computes optimal light settings at run-time to achieve a user-specified actuation profile, using an optimization framework based on a genetic algorithm. Uniquely, it can use deployed sensors to incorporate changing ambient lighting conditions and moving targets into actuation. Experimental results demonstrate that the Illuminator handles various high-level user requirements and generates an optimal light actuation profile. These results suggest that the Illuminator system supports entertainment and media production applications.

Development of Wire/Wireless Communication Modules using Environmental Sensor Modules for LNG Storage Tanks (LNG 저장탱크용 환경 센서 모듈을 이용한 유무선 통신 모듈 개발)

  • Park, Byong Jin;Kim, Min Sung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Accidents are steadily occurring due to machine defects and carelessness during LNG storage operations. In previous studies, an environmental sensor module capable of measuring pressure, temperature, gas concentration, and flow to detect danger in advance was developed and the response speed according to the amount of leaked gas was measured. This paper proposes the development of a wired and wireless communication module that transmits data measured by the environmental sensor module to embedded devices connected to wired and wireless networks of SPI, UART, and LTE. First, a data communication module capable of interworking with an environmental sensor is designed. Design a protocol between devices in the Local Control Part and wired and wireless protocols in the Local Control Part and Remote Control Part. Ethernet, WiFi, and LTE communication modules were designed, and UART and SPI channels that can be linked with embedded controllers were designed. As a result, it was confirmed through a UI (User Interface) that each embedded device transmits data measured by the environmental sensor module while simultaneously communicating on a wired and wireless basis.

An Energy-Efficient Periodic Data Collection using Dynamic Cluster Management Method in Wireless Sensor Network (무선 센서 네트워크에서 동적 클러스터 유지 관리 방법을 이용한 에너지 효율적인 주기적 데이터 수집)

  • Yun, SangHun;Cho, Haengrae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.206-216
    • /
    • 2010
  • Wireless sensor networks (WSNs) are used to collect various data in environment monitoring applications. A spatial clustering may reduce energy consumption of data collection by partitioning the WSN into a set of spatial clusters with similar sensing data. For each cluster, only a few sensor nodes (samplers) report their sensing data to a base station (BS). The BS may predict the missed data of non-samplers using the spatial correlations between sensor nodes. ASAP is a representative data collection algorithm using the spatial clustering. It periodically reconstructs the entire network into new clusters to accommodate to the change of spatial correlations, which results in high message overhead. In this paper, we propose a new data collection algorithm, name EPDC (Energy-efficient Periodic Data Collection). Unlike ASAP, EPDC identifies a specific cluster consisting of many dissimilar sensor nodes. Then it reconstructs only the cluster into subclusters each of which includes strongly correlated sensor nodes. EPDC also tries to reduce the message overhead by incorporating a judicious probabilistic model transfer method. We evaluate the performance of EPDC and ASAP using a simulation model. The experiment results show that the performance improvement of EPDC is up to 84% compared to ASAP.

Skew Compensation Algorithm for Time Synchronization in Wireless Sensor Networks (무선 센서 네트워크 시간 동기화에 대한 왜곡 보정 알고리즘)

  • Kumar, Shiu;Keshav, Tushar;Jo, Dong Hyeon;Kim, Hui;Lee, Jae Yeong;Jeon, Hye Ji;Jeong, Min A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.495-497
    • /
    • 2013
  • Wireless sensor networks (WSNs) have emerged as an attractive and key research area over the last decade. Time synchronization is a vital part of infrastructure for any distributed system. In embedded sensor networks, time synchronization is an essential service for correlating data among nodes and communication scheduling. This is realized by exchanging messages that are time stamped using the local clocks on the nodes. Various time synchronization protocols have been proposed aiming to attain high synchronization accuracy, high efficiency and low communication overhead. However, it requires that the time between resynchronization intervals to be as large as possible to obtain a system which is energy efficient having low communication overhead. This paper presents a simple but effective skew compensation algorithm that measures the skew rate of the sensor nodes with respect to the reference node and calibrates itself to compensate for the difference in the frequencies of the nodes. The proposed method can be incorporated with any existing time synchronization protocol for WSNs.

A Study of a Composite Sensor and Control Network and Its Test-bed for the Intelligent and Digital Home (지능형 디지탈홈을 위한 콤퍼짓 센서제어네트워크 및 테스트베드의 연구)

  • Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1687-1693
    • /
    • 2007
  • Advances in technologies of networking, chip integration, and embedded system have enabled sensor networks applicable to a wide range of areas. Sharing some common characteristics, sensor networks are thus diversified in features depending on their applications. An intelligent and digital home can be one area to establish a particular feature of sensor network. This paper proposes a composite sensor and control network, and discusses its applying to the next generation intelligent and digital home. Development results of the network and a test-bed as a virtual test environment are also presented. The proposed network can not only be efficiently applying to achieve new home intelligences but also provide a sound solution to maintenance and operations of home network or devices.

An implementation of wireless sensor network for security system using Bluetooth (블루투스를 이용한 보안을 위한 무선 센서네트워크의 구현)

  • Kim, Jae-Wan;Kim, Byoung-Kug;Eom, Doo-Seop
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1501-1504
    • /
    • 2004
  • We describe a Bluetooth wireless sensor network for security systems, which includes the implementation issues about system architecture, power management, self-configuration of network, and routing. We think that the methods or algorithms described in this paper can be easily applied to other embedded Bluetooth applications for wireless networks.

  • PDF

Implementing Finite State Machine Based Operating System for Wireless Sensor Nodes (무선 센서 노드를 위한 FSM 기반 운영체제의 구현)

  • Ha, Seung-Hyun;Kim, Tae-Hyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.85-97
    • /
    • 2011
  • Wireless sensor networks have emerged as one of the key enabling technologies for ubiquitous computing since wireless intelligent sensor nodes connected by short range communication media serve as a smart intermediary between physical objects and people in ubiquitous computing environment. We recognize the wireless sensor network as a massively distributed and deeply embedded system. Such systems require concurrent and asynchronous event handling as a distributed system and resource-consciousness as an embedded system. Since the operating environment and architecture of wireless sensor networks, with the seemingly conflicting requirements, poses unique design challenges and constraints to developers, we propose a very new operating system for sensor nodes based on finite state machine. In this paper, we clarify the design goals reflected from the characteristics of sensor networks, and then present the heart of the design and implementation of a compact and efficient state-driven operating system, SenOS. We describe how SenOS can operate in an extremely resource constrained sensor node while providing the required reactivity and dynamic reconfigurability with low update cost. We also compare our experimental results after executing some benchmark programs on SenOS with those on TinyOS.

Implementation of A Remote Fire Monitoring System Based on Bidirectional USN (양방향 USN기반 원격 화재 감시 시스템 구현)

  • Chung, Tae-Yun;Chung, Han-Su;Park, Lae-Jeong;Lee, Hyung-Bong;Moon, Jung-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.2
    • /
    • pp.107-115
    • /
    • 2007
  • In general, wireless sensor networks composed of many nodes which are located in ad. hoc environment and send the gathered data to sink node support only one way traffic. In those cases, it is not possible to send commands to nodes to react for exceptional events because the networks can not deliver downward data and the nodes run in pre-assigned fixed schedule. This paper expands the WSLP to bidirectional WSLP and implements a fire monitoring system on it, and shows the feasibility of bidirectional USN by demonstrating the usability of the process of reaction to a fire in the implemented fire monitoring system.

  • PDF