• Title/Summary/Keyword: embedded connection

Search Result 164, Processing Time 0.028 seconds

Analysis and design of demountable embedded steel column base connections

  • Li, Dongxu;Uy, Brian;Patel, Vipul;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • This paper describes the finite element model for predicting the fundamental performance of embedded steel column base connections under monotonic and cyclic loading. Geometric and material nonlinearities were included in the proposed finite element model. Bauschinger and pinching effects were considered in the simulation of embedded column base connections under cyclic loading. The degradation of steel yield strength and accumulation of plastic damage can be well simulated. The accuracy of the finite element model is examined by comparing the predicted results with independent experimental dataset. It is demonstrated that the finite element model accurately predicts the behaviour and failure models of the embedded steel column base connections. The finite element model is extended to carry out evaluations and parametric studies. The investigated parameters include column embedded length, concrete strength, axial load and base plate thickness. Moreover, analytical models for predicting the initial stiffness and bending moment strength of the embedded column base connection were developed. The comparison between results from analytical models and those from experiments and finite element analysis proved the developed analytical model was accurate and conservative for design purposes.

Embedded Controller Technology of Injection Molding Machine for Control and Monitoring (사출 성형기 제어/감시용 Embedded Controller 기술)

  • Kim, Han Gyu;Son, Il Ho;Song, Joon Yub;Ha, Tae Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.577-583
    • /
    • 2014
  • In this study, we introduce how to apply "Information and Communication Technology (ICT) to injection molding system. We report the current state of IT technology applied to produce their products in micro lens injection molding system. And we explain key technology of ICT for injection molding system and how to implement. Especially, we also mention about an embedded controller, also called as "M2M device". It provides programmable intelligent functions, communication, various interfaces, amplifier functions and mobile device connection to our application.

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

A Study on the Native Function Connection Technique for the Virtual Machines (가상기계를 위한 네이티브 함수 연결 기법에 관한 연구)

  • Man, Ko-Kwang
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.333-340
    • /
    • 2005
  • This paper presents of the native function connection technique for the embedded virtual machines, base on the native function connection methods of the virtual machines such as W, WabaVM. For this goals, we designs the adapter model and then implements the new native function table for the native function connection. And we presents the variety experiment and analysis results using the implemented technique.

Experimental study on the hybrid shear connection using headed studs and steel plates

  • Baek, Jang-Woon;Yang, Hyeon-Keun;Park, Hong-Gun;Eom, Tae-Sung;Hwang, Hyeon-Jong
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.649-662
    • /
    • 2020
  • Although several types of rigid shear connectors have been developed particularly to increase load-carrying capacity, application is limited due to the complicated details of such connection. In this study, push-out tests were performed for specimens with hybrid shear connectors using headed studs and shear plates to identify the effects of each parameter on the structural performance of such shear connection. The test parameters included steel ratios of headed stud to shear plate, connection length, and embedded depth of shear plates. The peak strength and residual strength were estimated using various shear transfer mechanisms such as stud shear, concrete bearing, and shear friction. The hybrid shear connectors using shear plates and headed studs showed large load-carrying capacity and deformation capacity. The peak strength was predicted by the concrete bearing strength of the shear plates. The residual strength was sufficiently predicted by the stud shear strength of headed studs or by shear friction strength of dowel reinforcing bars. Further, the finite element analysis was performed to verify the shear transfer mechanism of the connection with hybrid shear connector.

Experimental studies of headed stud shear connectors in UHPC Steel composite slabs

  • Gao, Xiao-Long;Wang, Jun-Yan;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • Due to the high compressive and tensile strength of ultra-high performance concrete (UHPC), UHPC used in steel concrete composite structures provided thinner concrete layer compared to ordinary concrete. This leaded to the headed stud shear connectors embedded in UHPC had a low aspect ratio. In order to systematic investigate the effect of headed stud with low aspect ratio on the structural behaviors of steel UHPC composite structure s this paper firstly carried out a test program consisted of twelve push out specimens. The effects of stud height, aspect ratio and reinforcement bars in UHPC on the structural behaviors of headed studs were investigated. The push out test results shows that the increasing of stud height did not obviously influence the structural behaviors of headed studs and the aspect ratio of 2.16 was proved enough to take full advantage of the headed stud strength. Based on the test results, the equation considering the contribution of weld collar was modified to predict the shear strength of headed stud embedded in UHPC. The modified equation could accurately predict the shear strength of headed stud by comparing with the experimental results. On the basis of push out test results, bending tests consisted of three steel UHPC composite slabs were conducted to investigate the effect of shear connection degree on the structural behaviors of composite slabs. The bending test results revealed that the shear connection degree had a significantly influence on the failure modes and ultimate resistance of composite slabs and composite slab with connection degree of 96% in s hear span exhibited a ductile failure accompanied by the tensile yield of steel plate and crushing of UHPC. Finally, analytical model based on the failure mode of composite slabs was proposed to predict the ultimate resistance of steel UHPC composite slabs with different shear connection degrees at the interface.

Cyclic behavior of steel beam-concrete wall connections with embedded steel columns (II): Theoretical study

  • Li, Guo-Qiang;Gu, Fulin;Jiang, Jian;Sun, Feifei
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.409-420
    • /
    • 2017
  • This paper theoretically studies the cyclic behavior of hybrid connections between steel coupling beams and concrete shear walls with embedded steel columns. Finite element models of connections with long and short embedded steel columns are built in ABAQUS and validated against the test results in the companion paper. Parametric studies are carried out using the validated FE model to determine the key influencing factors on the load-bearing capacity of connections. A close-form solution of the load-bearing capacity of connections is proposed by considering the contributions from the compressive strength of concrete at the interface between the embedded beam and concrete, shear yielding of column web in the tensile region, and shear capacity of column web and concrete in joint zone. The results show that the bond slip between embedded steel members and concrete should be considered which can be simulated by defining contact boundary conditions. It is found that the loadbearing capacity of connections strongly depends on the section height, flange width and web thickness of the embedded column. The accuracy of the proposed calculation method is validated against test results and also verified against FE results (with differences within 10%). It is recommended that embedded steel columns should be placed along the entire height of shear walls to facilitate construction and enhance the ductility. The thickness and section height of embedded columns should be increased to enhance the load-bearing capacity of connections. The stirrups in the joint zone should be strengthened and embedded columns with very small section height should be avoided.

Development of an Embedded S/W for Digital Coin Banking ATM (동전 입금 ATM 구축을 위한 임베디드 S/W 개발)

  • Jung, Won-Gyo;Park, Sang-Sung;Shin, Young-Guen;Jang, Dong-Sik
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.327-332
    • /
    • 2007
  • Because the coins of about 920 billion are hoarded during these ten years, the national treasury of about 35 billion wons is wasted in minting coins every year. In this paper we promote to revitalize the circulation of coins through the connection with the financial world. Firstly embedded software that is contained in the coin banking ATM is developed. Then we developed new business process model that does customer spend coins efficiently in online through this system. The system constructed in this paper can contribute to the public interest and the marketability of the nation because of reducing waste of the national treasury and improving utilization and negotiability of coins.

Basic study of algorithm for steel quantity analysis of composite precast concrete members (합성 PC 부재의 철골 물량산출 알고리즘 기초연구)

  • Kim, Gyeongju;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.96-97
    • /
    • 2014
  • Green Frame is a column-beam structure built by steel frame joints embedded in the columns and beams. Here, the steel frame embedded in the columns and beams is not a standardized product, instead it needs to be order-produced. The quantity for each steel frame size should be calculated to estimate the quantity of steel frames to be manufactured. However, it is highly time-consuming and requires a lot of effort in calculating the quantity of steel frames, for there are a wide range of steel frame types that are embedded in the columns and beams. To solve this problem, the study proposes an algorithm for calculation of the amount of steel frames with ease and promptness. When a program is developed using the algorithm proposed in the study in connection to the information on precast concrete members prepared in the design phase, it is anticipated that the manpower required as well as the manufacturing time will be decreased.

  • PDF

An Experimental Study on the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bars (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부의 거동에 관한 실험적 연구)

  • Lee, Sang-Yoon;Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.453-463
    • /
    • 2012
  • Steel-concrete composite rigid-frame bridge is a type of integral bridge having advantages in bridge maintenance and structural efficiency from eliminating expansion joints and bridge supports, the main problems in bridge maintenance. The typical steel-concrete composite rigid-frame bridge has the girder-abutment connection where a part of its steel girder is embedded in abutment for integrity. However, the detail of typical girder-abutment connection is complex and increases the construction cost, especially when a part of steel girder is embedded. Recently, a new type of bridge was proposed to compensate for the disadvantages of complex details and cost increase. The compensation are expected to improve efficiency of construction by simplifying the construction detail of the girder-abutment connection. In this study, a static load test has been carried out to examine the behavior of the girder-abutment connection using real-scale specimens. The results of the test showed that the girder-abutment connection of proposed girder bridge has sufficient flexural capacity and rebars to control concrete crack should be placed on the top of abutment.