인공지능 기술의 비약적 발전과 함께 사람의 언어를 다루는 자연어 처리 분야 역시 활발하게 연구가 진행되고 있다. 특히 최근에는 구글에서 공개한 언어 모델인 BERT는 대량의 코퍼스를 활용해 미리 학습시킨 모델을 제공함으로써 자연어 처리의 여러 분야에서 좋은 성능을 보이고 있다. BERT에서 다국어 모델을 지원하고 있지만 한국어에 바로 적용했을 때는 한계점이 존재하기 때문에 대량의 한국어 코퍼스를 이용해 학습시킨 모델을 사용해야 한다. 또한 텍스트는 어휘, 문법적인 의미만 담고 있는 것이 아니라 전후 관계, 상황과 같은 문맥적인 의미도 담고 있다. 기존의 자연어 처리 분야에서는 어휘나 문법적인 의미를 중심으로 연구가 주로 이루어졌다. 텍스트에 내재되어 있는 문맥 정보의 정확한 파악은 맥락을 이해하는 데에 있어 중요한 역할을 한다. 단어들의 관계를 이용해 연결한 지식그래프는 컴퓨터에게 쉽게 문맥을 학습시킬 수 있는 장점이 있다. 본 논문에서는 한국어 코퍼스를 이용해 사전 학습된 BERT 모델과 지식 그래프를 이용해 한국어 문맥 정보를 추출하는 시스템을 제안하고자 한다. 텍스트에서 중요한 요소가 되는 인물, 관계, 감정, 공간, 시간 정보를 추출할 수 있는 모델을 구축하고 제안한 시스템을 실험을 통해 검증한다.
기존의 데이터 마이닝 방법들은 기본적으로 지식 발견의 대상이 되는 데이터 집합이 마이닝 작업 시작 이전에 명확히 정의되는 것으로 가정하며 이러한 가정은 고정적으로 정의된 특정 데이터 집합에 내재된 정보 추출이 데이터 마이닝의 목적이 될 때 유효하다. 또한, 기존의 데이터 마이닝 방법들은 대용량의 데이터 집합에 대한 마이닝 결과를 얻는데 있어서 상당한 처리 시간을 요구한다. 따라서, 새로운 트랜잭션 데이터가 지속적으로 추가되는 데이터 스트림에서 추가된 트랜잭션의 정보들을 포함하는 최신의 마이닝 결과를 최대한 빠른 시간 안에 얻기를 기대하는 실시간 처리 환경에서는 기존의 데이터 마이닝 방법을 적용하는 것이 거의 불가능하다. 이러한 목적에 부합하기 위해서 본 논문에서는 새로운 데이터 마이닝 개념인 개방 데이터 마이닝을 제안한다. 개방 데이터 마이닝에서는 새로운 트랜잭션이 발생함에 따라 이전에 발생한 트랜잭션들에 대한 마이닝 결과가 새롭게 갱신되며 따라서 확장된 전체 트랜잭션 집합에 대한 마이닝 결과를 빠르게 얻을 수 있다. 이러한 방법을 효과적으로 구현하기 위해서는 새롭게 출현한 항목에 대한 지연추가와 이전 데이터 집합에 출현한 항목들 중에서 중요하지 않는 항목에 대한 전지작업이 병행되어야 한다. 논문에서 제안하는 알고리즘은 알고리즘의 특성을 파악하기 위한 일련의 다양한 실험을 통해서 검증된다.
본 연구에서는 GPU를 이용한 비압축성 유동장의 병렬연산을 위하여, P2P1 유한요소를 이용한 분리 알고리즘 내의 행렬 해법인 이중공액구배법(Bi-Conjugate Gradient)의 CUDA 기반 알고리즘을 개발하였다. 개발된 알고리즘을 이용해 비대칭 협착관 유동을 해석하고, 단일 CPU와의 계산시간을 비교하여 GPU 병렬 연산의 성능 향상을 측정하였다. 또한, 비대칭 협착관 유동 문제와 다른 행렬 패턴을 가지는 유체구조 상호작용 문제에 대하여 이중공액구배법 내의 희소 행렬과 벡터의 곱에 대한 GPU의 병렬성능을 확인하였다. 개발된 코드는 희소 행렬의 1개의 행과 벡터의 내적을 병렬 연산하는 커널(Kernel)로 구성되며, 최적화는 병렬 감소 연산(Parallel Reduction), 메모리 코얼레싱(Coalescing) 효과를 이용하여 구현하였다. 또한, 커널 생성 시 워프(Warp)의 크기에 따른 성능 차이를 확인하였다. 표준예제들에 대한 GPU 병렬연산속도는 CPU 대비 약 7배 이상 향상됨을 확인하였다.
디지털 영상에서 워터마킹이란 영상의 저작권 보호를 위한 방법이다. 이때 삽입되는 저작권 정보를 워터마크라 하고 이는 외부의 공격을 받더라도 쉽게 제거되지 않아야 한다. 그러나 대부분의 워터마킹 기법이 영상 압축, 필터링 둥의 파형 공격(waveform attack) 에는 강인하나 회전, 크기 변화, 이동, 잘려짐(cropping) 등과 같은 기하학적 공격(geometrical attack) 에 쉽게 깨어지는 단점을 보인다. 본 논문에서는 기하학적 공격에 대한 해결책으로 영상에서 불변의 무게중심(invariant centroid) 을 구하고 이를 템플릿(template) 으로 이용한 대수-극 좌표계 변환과 이산 여현 변환(Discrete Cosine Transform: DCT) 을 사용하여 워터마크를 삽입하고 검출하는 방법을 제안한다. 워터마크가 첨가된 영상에 가해지는 기하학적 공격은 불변의 무게중심과 대수-극 좌표계를 이용한 방법으로 극복하고, 파형 공격은 DCT 변환을 이용하여 해결하였다. 또한 워터마크 정보만을 역 LPM 변환하여 원 영상에 삽입하는 간접 삽입 방법을 사용함으로써 좌표계 변환으로 인한 화질의 열화를 막을 수 있었다. 실험 결과 제안된 방법은 기존의 방법에서 삽입된 워터마크의 검출이 불가능한 잘림을 동반한 기하학적 공격 후에도 워터마크의 검출이 가능하였다.
최근의 내장형 시스템은 그 용도에 따라 특정 기능만 수행하는 단순한 응용프로그램을 탑재했던 과거와는 달리 멀티미디어 기능들이 하나로 통합된 디지털 컨버전스 기기로 진화하면서 응용프로그램의 복잡도가 현저히 증가하였다. 또한 응용프로그램은 그 시대의 요구에 따라 여러 응용프로그램들과 통합되고 진화해 간다. 이러한 응용프로그램을 개발하고 관리하기 위해서는 개발자와 관리자간의 표준화된 인터페이스가 필요하다. 컴퓨팅 시스템에서 개방형 시스템 구조를 갖는 표준 중 운영체제의 인터페이스에 대한 표준으로 POSIX(Portable Operating System Interface)가 개발되었으며, 디지털 컨버전스 기기와 같이 실시간 운영체제 탑재를 요구하는 시스템을 위한 인터페이스 표준으로 POSIX.4계열이 있다. 본 논문에서는 개방형 실시간 운영체제 인터페이스 표준인 POSIX.4 지원을 위한 래퍼(wrapper)를 실시간 운영체제 UbiFOSTM에 설계 및 구현한 내용을 기술한다. 또한, POSIX.4 표준을 준수한 응용프로그램을 Linux와 UbiFOSTM에 각각 탑재하여 비교 실험하고 구현한 래퍼의 성능 오버헤드가 $3{\sim}9{\mu}s$로 미미하다는 측정 결과를 제시한다.
본 연구는 심박변이도(HRV)와 인공신경망을 이용하여 강건하고 정확한 융복합 감정예측 모형인 EPNN (Emotion Prediction Neural Network)을 개발하는 것을 주요 연구목적으로 한다. 본 연구에서 제안하는 EPNN은 기존 유사연구와는 달리 은닉노드의 활성함수로서 하이퍼볼릭 탄젠트, 선형, 가우시안 함수를 융복합적으로 이용하여 모형의 정확도를 향상시킨다. 본 연구에서는 EPNN의 타당성을 검증하기 위하여 20명의 실험자를 대상으로 머니게임으로 감정을 유도한 후에 해당 실험자의 심박변이도 측정값을 입력자료로 사용하였다. 아울러 그들의 Valence와 Arousal을 EPNN의 출력값으로 사용하였다. 실험결과 Valence에 대한 F-Measure는 80%이고, Arousal의 경우 95%로 나타났다. 한편 EPNN의 타당성을 측정하기 위하여 기존 감정예측 연구에 사용된 경쟁모형인 인공신경망, 로지스틱 회귀분석, 서포트 벡터 머신, 랜덤 포레스트 모형과 성과를 비교하였다. 그 결과 본 연구에서 제안하는 EPNN이 더 우수한 감정예측 결과를 보였다. 본 연구의 결과는 향후 유비쿼터스 디지털 헬스 환경에서 사용되는 다양한 웨어러블 기기에 적용되어 사용자들의 일상생활 속에서 시시각각 변하는 감정을 정확히 예측하고 적절하게 관리하는데 적용될 수 있을 것이다.
본 논문은 ffGA상에서 에너지 효율이 높은 데이터 경로 설계 방법론을 제안한다. 에너지, 처리시간, 그리고 면적간의 트레이드오프를 이해하기 위하여, 도메인 특성 모델링, coarse-grained 성능평가, 설계공간 조사, 그리고 로우-레벨 시뮬레이션 과정들을 통합한다. 도메인 특성 모델링 기술은 도메인의 특성에 따른 시스템 전체의 에너지 모에 영향을 미치는 여러 가지 구성요소와 파라미터들을 식별함으로써 하이-레벨 모델을 명시한다. 도메인이란 주어진 어플리케이션 커널의 알고리즘에 대응하는 아키텍쳐 패밀리이다. 하이-레벨 모델 또한 에너지, 처리시간 그리고 면적을 예측하는 함수들로 구성되어 트레이드오프 분석을 용이하게 한다. 설계 공간 조사(DSE)는 도메인에 명시된 설계 공간을 분석하여 설계 셋을 선택하도록 한다. 로우-레벨 시뮬레이션은 설계 공간 조사(DSE)에 의해 선택된 설계와 최종 선택된 설계의 정확한 성능평가를 위하여 사용된다. 본 논문에서 제안한 설계 방법은 매트릭스 곱셈에 대응하는 알고리즘과 아키텍쳐 패밀리를 사용한다. 제안된 방법에 의해 검증된 설계는 에너지, 처리시간과 면적간의 트레이드오프를 보인다. 제안된 설계 방법의 효율성을 보이기 위하여 Xilinx에서 제공되는 매트릭스 곱셈 커널과 비교하였다. 성능 비교 메트릭으로 평균 전력 밀도(E/AT)와 에너지 대 (면적 x 처리시간)비를 사용하였다. 다양한 문제의 크기에 대하여 Xilinx설계들과 비교하였을 때 제안한 설계 방법이 전력밀도(E/AT)에서 평균 $25\%$우수하였다. 또한 본 논문에 제안한 설계의 방법을 MILAN 프레임워크를 이용하여 구현하였다.
컴퓨팅 환경이 무선과 휴대용 시스템으로 변화하면서, 전력효율이 점점 중요해지고 있다. 특히 내장형 시스템일 경우에 더욱 그러한데 이중 메모리에서 소모되는 전력이 전체 전력소모의 두 번째 큰 요소가 되고 있다. 메모리 시스템에서의 전력소모를 줄이기 위해서 SDRAM의 저전력 모드를 활용할 수 있다. RDRAM의 경우 냅모드(nap mode)는 액티브 모드(active mode)의 5%이하의 전력만을 소모한다. 하지만 하드웨어 컨트롤러는 운영체제가 협조하지 않으면 이 기능을 효율적으로 활용하지 못한다. 이 논문에서는 SDRAM의 액티브 유닛(active unit)의 수를 최소화하는 방법에 초점을 맞춘다. 운영체제는 참조되지 않는 메모리를 저전력 모드에 놓음으로써 최소한의 유닛들만을 액티브 모드에 놓은 상태로 프로그램이 수행될 수 있도록 피지컬(physical) 페이지들을 할당한다. 이것은 PAVM(Power Aware Virtual Memory) 연구의 일반화된 시스템 전반에 대한 연구라고 할 수 있다. 우리는 모든 피지컬 메모리를 고려하고 있으며, 특히 평균적으로 전체 메모리의 절반을 사용하는 버퍼 캐시를 고려하고 있다. 버퍼 캐시의 용량과 그 중요성 때문에 PAVM 방식은 버퍼 캐시를 고려하지 않고는 완전한 해법이 되지 못한다. 이 논문에서 우리는 메모리의 사용처를 분석하고 저전력 페이지 할당 정책을 제안한다. 특히 프로세스의 주소공간에 매핑(mapping)된 페이지들과 버퍼 캐시가 고려된다. 이 두 종류의 페이지들간의 상호작용과 그 관계를 분석하고 저전력을 위해 이러한 관계를 이용한다.
본 논문에서는 개폐상태를 알릴 수 있는 스위치나 센서들을 이용하여, 수면자의 수면상태를 인식할 뿐 아니라 올바른 수면상태로 제어할 수 있는 수면제어 및 원격모니터링 시스템을 제안하였고, 이 시스템을 헬스케어 수면매트에 실제 적용한 예를 보였다. 제안한 시스템은 센서를 이용한 수면상태 감지부, 센싱데이터 검출 및 송수신부, 수면상태 제어 및 모니터링부로 구성되었다. 시스템 구축을 위해 먼저, 수면상태 감지부는 접촉 방식의 개폐형식의 스위치센서를 사용하였다. 둘째, 센싱데이터 검출 및 송수신부는 임베디드 보드를 자체 개발하였으며, 실시간 데이터 추출과 수면상태 제어 및 모니터링부와는 소켓 기반의 통신이 지원된다. 그리고 세 번째 수면상태 제어 및 모니터링부에서는 입력된 센서 ID와 센싱된 데이터를 기반으로 올바른 수면자세의 유도 및 전반적인 수행상태 정보를 모니터링 하도록 하였다. 마지막으로 이들 서비스 모듈 및 그들 간의 통신구현은 실시간 객체지향형 모델인 TMO 스키마와 이들 간의 실시간 통신을 위해 분산 미들웨어로서 TMOSM을 이용하였다.
트리 데이터로부터 유용한 정보들을 추출하는 가장 일반적인 방식은 빈번하게 자주 발생하는 서브트리 패턴들을 얻는 것이다. XML 마이닝, 웹 사용 마이닝, 바이오인포매틱스, 네트워크 멀티캐스트 라우팅 등 빈번 트리 패턴 마이닝은 여러 다양한 영역에서 광범위하게 이용되고 있기 때문에, 해당 패턴들을 추출하기 위한 많은 알고리즘들이 제안되어 왔다. 하지만, 현재까지 제안된 대부분의 트리 마이닝 알고리즘들은 여러 가지 심각한 문제점들을 내포하고 있는데 이는 특히 대량의 트리 데이터 집합을 대상으로 했을 때는 더 심각해진다. 주요하게 발생하는 문제점들로는, (1) 계층적 트리 구조의 데이터 모델링, (2) 후보군 유지를 위한 고비용 계산, (3) 반복적인 입력 데이터 집합 스캔, (4) 높은 메모리 의존성이 대표적이다. 이런 문제점들을 발생하게 하는 주요 원인은, 대부분의 기존 알고리즘들이 apriori 방식에 근거하고 있다는 점과 후보군 생성과 빈발 횟수 집계에 anti-monotone 원리를 적용한다는 점에 기인한다. 언급한 문제들을 해결하기 위해, 본 저자들은 apriori 방식 대신 pattern-growth 방식을 기반으로 하며, 빈번 서브트리 추출 대신 최대 빈번 서브트리 추출을 목적으로 한다. 이를 통해 제안된 방법은, 빈번하지 않은 서브트리들을 제거하는 과정 자체를 배제할 뿐만 아니라, 후보군 트리들을 생성하는 과정 또한 전혀 수행하지 않음으로써 전체 마이닝 과정을 상당히 개선한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.