• 제목/요약/키워드: embedded angle

검색결과 204건 처리시간 0.024초

사질토 지반에 설치된 마이크로파일의 설치간격 및 설치각도에 따른 압축거동특성 (Compressive Behavior of Micropile According to Pile Spacing and Embedded Pile Angle in Sand)

  • 경두현;김가람;김대홍;신주호;이준환
    • 한국지반공학회논문집
    • /
    • 제29권12호
    • /
    • pp.57-67
    • /
    • 2013
  • 마이크로파일 기초는 1950년대 Lizzi에 의해 개발된 이후 널리 이용되고 있다. 무리 마이크로파일의 효과에 대한 연구는 많은 연구자들로부터 수행되어 왔다. 무리 형태로 설치된 마이크로파일의 지지성능 발휘 효과는 지반조건 및 말뚝의 길이, 말뚝의 설치 간격(S), 말뚝의 설치각도(${\theta}$), 말뚝의 배치조건 등 다양한 변수에 의해 변화된다. 본 연구에서는 다양한 조건에서의 연직재하시험을 통하여 무리 마이크로파일의 저항력증가효과와 침하억제효과를 규명하도록 하였다. 본 연구를 위하여, 전면기초(Mat)와 무리 마이크로파일 기초(GP), 마이크로파일을 이용한 마이크로파일지지 전면기초(MPR)에 대한 연직재하시험을 다양한 설치간격과 설치각도 조건에서 수행하였다. 실험결과 마이크로파일지지 전면기초(MPR)의 저항력이 전면기초(Mat)와 무리 마이크로파일(GP)의 저항력의 80%(S=3D)-110%(S=7D)로 측정되는 것으로 나타났으며, 마이크로파일지지 전면기초(MPR)의 침하억제효과가 전면기초(Mat)의 20%(S=3D, ${\theta}=45^{\circ}$)에서 70%(S=7D, ${\theta}=15^{\circ}$) 수준까지 측정 되는 것으로 나타났다.

위성체 유연 보 구조물의 열 안정성 해석 (Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage)

  • 윤일성;송오섭
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.18-29
    • /
    • 2002
  • 본 논문에서는 얇은 벽보로 모델링 한 위성체 구조물에 입사되는 열 하중에 의해 발생하는 굽힘 진동과 열적 플러터에 대하여 연구하였다. 복합재료 얇은 벽보는 회전관성과 1차, 2차 와핑, 전단변형의 비고전적 요소를 포함한다. CUS구조물로 모델링한 복합재료 얇은 벽보의 열 진동 특성은 적층 순서와 섬유강화복합재료의 방향특성인자로부터 기인된 종방향 굽힘과 횡방향 굽힘의 언성과 관련하여 연구되었다. 수치 해석적인 방법으로 열적 플러터의 안정성 영역의경계값을 구하였으며, 태양 열 플럭스의 입사각, 감쇠계수, 섬유각의 변화에 의한 보의 변위를 구하였다. 주 구조물에 압전소자를 부착하여, 감지기와 작동기로 사용하여 제어해석을 수행하였다.

Bond properties of steel and sand-coated GFRP bars in Alkali activated cement concrete

  • Tekle, Biruk Hailu;Cui, Yifei;Khennane, Amar
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.123-131
    • /
    • 2020
  • The bond performance of glass fibre reinforced polymer (GFRP) bars and that of steel bars embedded in Alkali Activated Cement (AAC) concrete are analysed and compared using pull-out specimens. The bond failure modes, the average bond strength and the free end bond stress-slip curves are used for comparison. Tepfers' concrete ring model is used to further analyse the splitting failure in ribbed steel bar and GFRP bar specimens. The angle the bond forces make with the bar axis was calculated and used for comparing bond behaviour of ribbed steel bar and GFRP bars in AAC concrete. The results showed that bond failure mode plays a significant role in the comparison of the average bond stress of the specimens at failure. In case of pull-out failure mode, specimens with ribbed steel bars showed a higher bond strength while specimens with GFRP bars showed a higher bond stress in case of splitting failure mode. Comparison of the bond stress-slip curves of ribbed steel bars and GFRP bars depicted that the constant bond stress region at the peak is much smaller in case of GFRP bars than ribbed steel bars indicating a basic bond mechanism difference in GFRP and ribbed steel bars.

영상 정보를 이용한 ROBOKER 팔 위의 역진자 시스템의 지능 밸런싱 제어 구현 (Intelligent Balancing Control of Inverted Pendulum on a ROBOKER Arm Using Visual Information)

  • 김정섭;정슬
    • 한국지능시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.595-601
    • /
    • 2011
  • 본 논문에서는 영상 정보를 이용하여 로보커 팔위의 역진자의 밸런싱 제어를 한다. 로봇 팔위에 놓인 역진자의 각도는 카메라로 검출하고 검출된 각도 값은 제어기로 귀환되어 오차를 생성한다. 따라서 전체 제어루프는 폐회로 루프를 형성한다. 제어 성능을 높이기 위해 기존 선형제어기에 신경망 제어기를 더하였다. RBF 네트워크의 학습 알고리즘은 FPGA에 설계된 부동소수점 연산이 가능한 디지털 제어기에 의해 수행된다. 실험을 통하여 전체 시스템 성능을 검증하였다.

Application of Transformation Electromagnetics to Cloak Design and Reduction of Radar Cross Section

  • Mittra, Raj;Zhou, Yuda
    • Journal of electromagnetic engineering and science
    • /
    • 제13권2호
    • /
    • pp.73-85
    • /
    • 2013
  • In this paper we present an alternative approach to addressing the problem of designing cloaks for radar targets, which have been dealt with in the past by using the transformation optics (TO) algorithm. The present design utilizes realistic materials, which can be fabricated in the laboratory, and are wideband as well as relatively insensitive to polarization and incident angle of the incoming wave. The design strategy, presented herein, circumvents the need to use metamaterials for cloak designs that are inherently narrowband, dispersive and highly sensitive to polarization and incident angle. A new interpretation of the TO algorithm is presented and is employed for the design of radar cross section-reducing absorbers for arbitrary targets, and not just for canonical shapes, e.g., cylinders. The topic of performance enhancement of the absorbers by using graphene materials and embedded frequency structure surfaces is briefly mentioned. The design procedure for planar absorbing covers is presented and their performance as wrappers of general objects is discussed. A number of test cases are included as examples to illustrate the application of the proposed design methodology, which is a modification of the classical TO paradigm.

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

Improved bracing systems to prevent exterior girder rotation during bridge construction

  • Ashiquzzaman, Md;Ibrahim, Ahmed;Lindquist, Will;Hindi, Riyadh
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.325-336
    • /
    • 2019
  • Concrete placement and temporary formwork of bridge deck overhangs result in unbalanced eccentric loads that cause exterior girders to rotate during construction. These construction loads affect the global and local stability of the girders and produce permanent girder rotation after construction. In addition to construction loads, the skew angle of the bridge also contributes to girder rotation. To prevent rotation (in both skewed and non-skewed bridges), a number of techniques have been suggested to temporarily brace the girders using transverse tie bars connecting the top flanges and embedded in the deck, temporary horizontal and diagonal steel pipes placed between the webs of the exterior and first interior girders, and permanent cross frames. This study includes a rigorous three-dimensional finite element analysis to evaluate the effectiveness of several bracing systems for non-skewed and several skewed bridges. In this paper, skew angles of $0^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $45^{\circ}$ were considered for single- and three-span bridges. The results showed that permanent cross frames worked well for all bridges, whereas temporary measures have limited application depending on the skew angle of the bridge.

임플랜트를 위한 하악골 측정시 전산화단?사진상의 정확도에 관한 연구 : 하악 위치와 gantry각이 미치는 영향 (Accuracy of CT image in measuring the mandible for implant : Effect of mandibular position and gantry angle)

  • 최순철;최항문;박래정;이삼선;박태원;유동수
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.225-234
    • /
    • 1998
  • We used five adult dog mandibles embedded in resin block and six different cross-sectional planes for each mandible were choosen. According to the angle of mandibular occulsal plane to vertical plane(mandibular angle) and gantry angle of CT machine, we classified 4 experimental groups and 1 control group. The control group images were taken at the mandibular angel 0° and gantry angle 0°. The experimental images were taken at the mandibular angle 15° and gantry angle 0°(group 1); 30° and 0°(group 2); 15° and 15°(group 3) ;30° and 30°(group 4), respectively. Using the reformatted cross-sectional images, the distance from the mandibular canal to the alveolar crest and the distance from the mandibular canal to the buccal cortex and to the lingual cortex was measured and compared. The obtained results were as follows: 1. The distance from the mandibular canal to the alveolar crest of group 1 and 2 was larger than control group, but the distance of group 3 and 4 was smaller. The distance from the mandibular canal to the buccal cortex and to the lingual cortex of all experimental groups was smaller than control group. 2. The distance from the mandibular canal to the alveolar crest showed the largest difference from control group in all experimental groups, especially in group 2 and 4(p<0.05). 3. In the distance from the mandibular canal to the alveolar crest, the number of deviation value under 1 mm was 20 in group 3 and was 11 in group 2 and 4, respectively. 4. The deviation value of the distance from the mandibular canal to the buccal cortex and to the lingual cortex was under 1 mm in most cases.

  • PDF

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.

다운증후군 아동들의 보행 비대칭성 연구 (Gait Asymmetry in Children with Down Syndrome)

  • 임비오;한동기;서정석;은선덕;권영후
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.145-151
    • /
    • 2006
  • A large interindividual variability and some abnormally kinematic patterns at the lower extremity were the main features of the gait in children with Down syndrome. The purposes of this study were to investigate the gait asymmetry and biomechanical difference between dominant leg and non dominant leg in children with Down syndrome. Seven boys with Down Syndrome(age: $120{\pm}0.9yrs$, weight $34.4{\pm}8.4kg$, leg length: $68.7{\pm}5.0cm$) participated in this study. A 10.0 m ${\times}$ 1.3 m walkway with a firm dark surface was built and used for data collection. Three-dimensional motion analyses were performed to obtain the joint angles and range of motions. The vertical ground reaction forces(%BW) and impulses($%BW{\cdot}s$) were measured by two force plates embedded in the walkway. Asymmetry indices between the legs were computed for all variables. After decision the dominant leg and the non dominant leg with max hip abduction angle, paired samples t-test was employed for selected kinematic and ground reaction force variables to analyze the differences between the dominant leg and the non dominant leg. The max hip abduction angle during the swing phase showed most asymmetry, while the knee flexion angle at initial contact showed most symmetry in walking and running. The dominant leg showed more excessive abduction of hip in the swing phase and more flat-footed contact than the non dominant leg. Vertical peak force in running showed more larger than those of in walking, however, vertical impulse showed more small than walking due to decrease of support time. In conclusion, the foot of dominant leg contact more carefully than those of non dominant leg. And also, there are no significant difference between the dominant leg and the non dominant leg in kinematic variables and ground reaction force due to large interindividual variability.