• Title/Summary/Keyword: embedded H-grid

Search Result 6, Processing Time 0.02 seconds

Fast Path Planning Algorithm for Mobile Robot Navigation (모바일 로봇의 네비게이션을 위한 빠른 경로 생성 알고리즘)

  • Park, Jung Kyu;Jeon, Heung Seok;Noh, Sam H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • Mobile robots use an environment map of its workspace to complete the surveillance task. However grid-based maps that are commonly used map format for mobile robot navigation use a large size of memory for accurate representation of environment. In this reason, grid-based maps are not suitable for path planning of mobile robots using embedded board. In this paper, we present the path planning algorithm that produce a secure path rapidly. The proposed approach utilizes a hybrid map that uses less memory than grid map and has same efficiency of a topological map. Experimental results show that the fast path planning uses only 1.5% of the time that a grid map based path planning requires. And the results show a secure path for mobile robot.

Comparison of Turbulence Models through Three Dimensional Numerical Soultion for the Tip Region of an Axial Compressor Cascade (축류 압축기 날개열의 팁 영역에 관한 3차원 수치해석을 통한 난류모형 비교)

  • Choi I. K.;Maeng J. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1997
  • A pressure-based Navier-Stokes numerical solver was used to compare solutions of the k-ε/RNG k-ε turbulence models. An efficient grid generation scheme, the transient grid generation with full boundary control, was used to solve the flows in the tip clearance region. Results indicate that the calculations using k-ε model captures various phenomena related to the tip clearance with good accuracy.

  • PDF

Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions (정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계)

  • Cho, J. K.;Park, W. G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.

Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors (축류터빈 동익 내부의 누설유동에 관한 수치해석)

  • Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages was carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry was accurately modeled adopting the embedded H grid system. An explicit four-stage Runge-Kutta scheme was used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, were interpreted and compared with the experimental data from the Penn State turbine stage. The predictions for major features of the flow field have been found to be in good agreement with the experimental data.

  • PDF

Numerical Analysis of Tip Leakage Flows in Axial Flow Turbine Rotors (축류터빈 동익 내부의 누설유동에 관한 수치해석)

  • Chung H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.171-175
    • /
    • 2003
  • Numerical analysis of three-dimensional viscous flow-fields in the turbine rotor passages is carried out to investigate flow physics including the interaction between secondary vortices, tip leakage vortex, and the rotor wake. The blade tip geometry is accurately modeled adopting the embedded H grid topology. An explicit four-stage Runge-Kutta scheme is used for the time integration of both the mean flow and turbulence equations. The computational results for the entire turbine rotor flows, particularly the tip clearance flow and the secondary flows, are interpreted and compared with the experimental data from the Penn State turbine stage. Good agreement between the experimental data and the numerical prediction was achieved in the sense of the major features of the flow fields.

  • PDF

Flexural Behavior of Bridge Deck Concrete Reinforced with FRP Box and Plate (FRP Box와 판으로 보강된 교량 바닥판 콘크리트의 휨거동)

  • Nam J. H.;Jeong S. K.;Yoon S. J.;Kim B. S.;Cho K. H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.13-17
    • /
    • 2004
  • In recent years, the deterioration of reinforced concrete structures has become a serious problem in civil engineering fields. This situation is mainly due to corrosion of steel reinforcing bars embedded in concrete. Recently, there has been a greatly increased demand for the use of FRP (fiber reinforced plastic) in civil engineering field due to their superior mechanical and physical properties. This paper presents an experimental study on the behavior of concrete bridge deck reinforced with FRP Box, FRP Plate, and FRP Re-bar. In tlIe study, mechanical properties of FRP Box, FRP Plate, GFRP Re-bar, and CFRP Grid have been investigated. Full scale one-way deck slab was tested under four point lateral load (equivalent to actual wheel load of DB-24 including impact). Load-deflection and load-strain data were collected through LVDT's and strain gages attached to the specimen.

  • PDF