• Title/Summary/Keyword: embankment slope

Search Result 171, Processing Time 0.019 seconds

The Seepage Behaviour and Stability of Extension Embankment by Unsteady State Seepage (비정상침투에 의한 증축제체의 침투거동과 안정성)

  • Shin, Bang-Woong;Bae, Woo-Seok;Lee, Jong-Kyu;Kang, Jong-Beom
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.57-65
    • /
    • 2001
  • In this study, the seepage behavior and the stability of the extension embankment were estimated for three cases the permeability coefficient of an extension part and the rising velocity due to the rainfall of flood period. In parallel flow condition, the unstability of the slope due to embankment erosion was examined by analyzing the variation of seepage line by the seepage modeling tests and FEM analysis, and the stability of the embankment slope accompanied by the sudden rise of the water level after the flood. The seepage behavior of extension embankment indicates that the larger permeability of the extension part the longer initial seepage distance, and the exit point from embankment slope is gradually increased, and then shows unstable seepage behavior that occurs a partial collapse as safety factor decreases with time. It is because of the increment of exit points due to variation of seepage line and rising velocities of water level. Also, the collapse aspect of embankment slope shows that the increment rising velocities of water level causes the increment collapse height and depth.

  • PDF

Analysis for the Safety Factor of Slope and Seepage according to Change Cross-Section in the Reservoir Embankments (저수지 제체 단면 형상 변화에 따른 안전율 및 침투유량 분석)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.37-46
    • /
    • 2013
  • Many factors about the stability for the reservoir embankments is determined when the facility is completed. Therefore the initial design of the embankment is important. Many researchers focused the effect of soil parameters although the cross section greatly affects the stability and can be controlled in design step. The objective of this research is to analysis of the effects for the safety factor of slope and seepage according to change cross-section in embankment. As a result, the quantity of seepage decreased as the gradient of downstream slope decreased and was proportional to the height of embankments. There was a linear relationship between the gradient of slope and the safety factor of slope. However the gradient of slope did not affect other side slope. All in a relationship, regressive equations with a high correlation coefficient were calculated and can be applied the simple estimation method of the stability using the cross-section. As results of analyzing the sensitivity, the friction angle and permeability critically effect for the slope stability and the seepage, respectively. The effect of the slope gradient was similar to major soil properties.

Safety evaluation of agricultural reservoir embankment according to backside extension (후면 덧쌓기에 따른 농업용 저수지 제체의 안정성 평가)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.97-110
    • /
    • 2012
  • This study was carried out for safety evaluation, the practical application and improvement of design method of the agricultural reservoir embankment according to backside extension. Seepage analysis, slope stability analysis and finite element analysis were performed for steady state and transient conditions. Also, the pore water pressure, seepage quantity, safety factor and stress-strain behavior according to high water level and rapid drawdown were compared and analyzed. The pore water pressure at contact region between backside extension and old embankment was kept high after rapid drawdown. Therefore, backside extension is recommended that design method is required to be improved and reinforced more than the others raising embankment. The hydraulic gradients before and after backside extension showed high value at the base of the core, but they showed stable state at the upstream slope and downstream slope. The seepage quantity per 1 day and the leakage per 100 m for the steady state and transient conditions appeared to be safe against the piping. The safety factor of slope stability showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown. The safety factor was appeared high at the upstream slope before backside extension and downstream slope after extension. The excess pore water pressure for steady state and transient conditions showed negative(-) at the upstream slope, it was small at the downstream slope. The mean effective stress (p') showed high at the base of the core and to be wild distribution after the extension. The displacement after extension showed 0.02-0.06 m in the upstream slope, the maximum shear strain after extension was smaller than that before extension.

Finite Element Analysis for the Effects on the Stiffness of the Embankment and Sandmat on the Deformation Property and the Safety of Road Embankment (성토체 및 모래매트의 강성이 하부지반의 변형과 성토체의 안전에 미치는 영향에 대한 유한요소해석)

  • Bae, Woo-Seok;Kim, Jong-Woo;Kwon, Young-Cheul
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • Effects on the stiffness of the embankment and sandmat on the construction safety of road embankment was investigated in this study by the numerical experiments using FEM. Two points was mainly focused in this study especially. First the deformation characteristics by the change of the stiffness of sand mat and embankment was investigated by the analyzing the consolidation settlement at the center of the embankment and the lateral displacement at the toe of the embankment. And, the effect of the stiffness on the stress distribution characteristics was also investigated in this study. Furthermore, slope stability analysis was carried out to gain the safe factor by change the stiffness of the sandmat and the embankment. The objective of the study is supplying the result of the numerical experiments for the geotechnical engineers who use the FEM for the safety design of the soil structures. As a result, the stiffness of the superstructures greatly affects on the deformation characteristics both in consolidation settlement and lateral displacement. However, it can be aware that it is not dominants to the stress distribution in the aspect that the no changes in the residual excess pore water pressure. Therefore, the decision of the stiffness has to be carried out deliberately considering not only the consolidation the magnitude of the settlement and the lateral displacement, but the slope stability.

A Study on Filter Performance of Materials in Embankment Slope during Heavy Rain (강우시 성토사면 재료의 필터조건검토에 대한 연구)

  • Kim, Sang-Hwan;Mha, Ho-Seong
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • This paper presents the characteristics of internal erosion of embankment slopes due to the localized heavy rain. In this study, the existing analysis methods of filter performance in embankment materials were reviewed. Based on the theoretical concept of filter conditions to prevent particles from being carried in from the adjacent embankment materials, new analysis method was suggested. According to the new analysis method for filter performance, experimental programs were carried out to investigate the filter performance for controlling and sealing any leak which develops through the embankment materials as a result of internal erosion. Three sets of small scale laboratory tests were carried out with changing the main influence factors such as rainfall intensity, gradient of slope, embankment material condition. It was found that the new analysis method for filter performance to prevent particles from being carried in from the adjacent embankment materials was more capable approach to design the filter materials in embankment slopes. The new criterion or method for satisfactory filter performance, therefore, was recommended.

  • PDF

Evaluation of The Seepage Behavior for Reinforced Embankment (보강제체사면의 침투거동평가)

  • 신방웅;안병철
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.146-152
    • /
    • 2000
  • To estimate the behavior of reinforced and unreinforced embankment constructed on a impermeable foundation ground, a laboratory model test was performed for two types of soils and water level increasing velocity of a flood period. The experiment models were constructed with slopes of water level is 1.25cm/min, 2.5cm/min each. From model test results, as the slope of reinforced and unreinforced embankment was the slower, the more seepage line rised. In the unreinforced embankment, the rising velocity of water level was the faster, the larger the embankment failure was. And the reinforced embankment with geotextile was the more safe than the unreinforced embankment for seepage force.

  • PDF

Experimental Study on the Slope Failure of Embankment (성토사면의 붕괴에 관한 실험적 연구)

  • 강우묵;이달원;지인택;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.47-62
    • /
    • 1993
  • The laboratorv model test was carried out to investigate the behavior of pore water pressure, the critical amount of rainfall for slope failure, the pattern of failure, and the variation of seepage line at the slope with the uniform material of embankment by changing the slope angles and rainfall intensities. The results were was summarised as follows : 1.At the beginning stage of rainfall, the negative pore pressure appeared at the surface of slope and the positive pore pressure at the deep parts. But, the negative one turned into the positive one as the rainfall continued and this rapidly increased about 50 to 100 minutes before the slope failure. 2.The heavier the rainfall intensity, the shorter the time, and the milder the slope, the longer the time took to reach the failure of slope. 3.As the angle of the slope became milder, the critical amount of rainfall for slope failure became greater. 4.Maximum pore water pressure was 10 to 40g/cm$^2$ at the toe of slope and 50 to 90g/cm$^2$at the deep parts. 5.In the respect of the pattern of slope failure, surface failure of slope occurred locally at the toe of slope at the A-soil and failure of slope by surface flow occurred gradually at the top part of slope at the B-soil. 6.As the rainfall continued and the saturation zone in the embankment was formed, the seepage line went rapidly up and also the time to reach the total collapse of slope took longer at the B-soil. 7.As the position of the seepage line went up and the strength parameter accordingly down, the safety factor was 2.108 at the A-soil and 2.150 at the B-soil when the slope occured toe failure. Minimum safety factor was rapidly down to 0.831 at the A-soil and to 0.936 at the B-soil when the slope collapsed totally at the top part of slope.

  • PDF

A Study on Vegetated Embankment Slope Reinforcement Using A Synthetic Resine Based Net-hose System (합성수지 소재 네트호스 시스템을 이용한 성토사면 녹화 보강에 대한 연구)

  • Baek, Yong-Gi;Lee, Min-Kyu;Ahn, Jaehun;Oh, Jeongho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.8-13
    • /
    • 2015
  • This study investigates the application of a synthetic resine based net-hose system to sustain vegetated embankment slope reinforcement. The net-hose system is designated to improve water supply to the vegetation that can suffer the lack of water in case of extreme drying condition or rock slope where water supply is relatively insufficient to ensure the growth of vegetation. A series of laboratory tests were conducted to check the structural adequacy and effectiveness of net-hose system. The results indicated that the model slope equipped with net-hose system seemed to provide better water supply resulting in more vegetated areas and higher matric suction due to active water uptake capacity, which might be contributed to greater shear strength of slope surface. A limited numerical analysis was conducted to verify the effect of water uptake on vegetated root system that generally yields better slope stability.

Behavior of a Geotextile Reinforced Embankment (Geotextile로 보강된 제체의 거동)

  • Shin, Bang-Woong;Bae, Woo-Seok;Lee, Jong-Kyu;An, Byung-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.51-58
    • /
    • 2001
  • The primary objective of this paper was to study the seepage and the failure behavior of unreinforced and reinforced embankment, respectively. Experimental study was conducted to examine the infiltration characteristics. The embankment infiltration tests were conducted with water level condition(h=15cm, 25cm, 35cm), slope inclination(1:1.5, 1:2.0), and the rising velocity(1.25cm/min, 2.5cm/min), respectively. From the model test results, as the slope inclination is decreased, the rising velocity of seepage line increased with both reinforced and unreinforced embankment. With the unreinforced embankment, the rising velocity of water level was faster and the failure circle is lager than those of reinforced ones. And the reinforced embankment with geotextile was safer against seepage force than that of the unreinforced embankment.

  • PDF

Limit analysis of 3D rock slope stability with non-linear failure criterion

  • Gao, Yufeng;Wu, Di;Zhang, Fei;Lei, G.H.;Qin, Hongyu;Qiu, Yue
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-76
    • /
    • 2016
  • The non-linear Hoek-Brown failure criterion has been widely accepted and applied to evaluate the stability of rock slopes under plane-strain conditions. This paper presents a kinematic approach of limit analysis to assessing the static and seismic stability of three-dimensional (3D) rock slopes using the generalized Hoek-Brown failure criterion. A tangential technique is employed to obtain the equivalent Mohr-Coulomb strength parameters of rock material from the generalized Hoek-Brown criterion. The least upper bounds to the stability number are obtained in an optimization procedure and presented in the form of graphs and tables for a wide range of parameters. The calculated results demonstrate the influences of 3D geometrical constraint, non-linear strength parameters and seismic acceleration on the stability number and equivalent strength parameters. The presented upper-bound solutions can be used for preliminary assessment on the 3D rock slope stability in design and assessing other solutions from the developing methods in the stability analysis of 3D rock slopes.