• Title/Summary/Keyword: elongation-strain

Search Result 289, Processing Time 0.027 seconds

Effect of Microstructure on the Strain Aging Properties of API X70 Pipeline Steels (API X70 라인파이프 강재의 변형 시효 특성에 미치는 미세조직의 영향)

  • Lee, Seung-Wan;Im, In-Hyuk;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.702-708
    • /
    • 2018
  • This study deals with the effect of microstructure factors on the strain aging properties of API X70 pipeline steels with different microstructure fractions and grain sizes. The grain size and microstructure fraction of the API pipeline steels are analyzed by optical and scanning electron microscopy and electron backscatter diffraction analysis. Tensile tests before and after 1 % pre-strain and thermal aging treatment are conducted to simulate pipe forming and coating processes. All the steels are composed mostly of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite. After 1 % pre-strain and thermal aging treatment, the tensile test results reveal that yield strength, tensile strength and yield ratio increase, while uniform elongation decreases with an increasing thermal aging temperature. The increment of yield and tensile strengths are affected by the fraction of bainitic ferrite with high dislocation density because the mobility of dislocations is inhibited by interaction between interstitial atoms and dislocations in bainitic ferrite. On the other hand, the variation of yield ratio and uniform elongation is the smallest in the steel with the largest grain size because of the decrease in the grain boundary area for dislocation pile-ups and the presence of many dislocations inside large grains after 1 % pre-strain.

Forming Characteristics of Laser Welded Tailored Blanks (레이저 용접 테일러드 블랭크의 성형특성)

  • 박기철;한수식;김광선;권오준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.121-130
    • /
    • 1998
  • In order to analyze the forming characteristics of laser welded tailored blanks, laser welded blanks of different thickness and strength combinations were prepared and tensile, stretching, stretch flanging and deep drawing tests were done. The tensile elongation perpendicular to the weld line, stretching and stretch flanging formability decreased with increasing the deformation restraining force (strength ${\times}$ thickness) ratio between two welded sheets. The tensile elongation along weld line reached a value above 90% of the single sheet's elongation. Stretch flanging formability was reduced to approximately 10% of the single sheet value when the deformation restraining force ratio between two welded sheets was increased to two. Weld line movement of deep drawing test specimens was also affected by the strength ratio of the combined sheets, the weld line location and forming conditions. In all forming modes of tailored blanks, excessive weld line movement resulted from strain concentrations at the weaker sheet and resulted in fracture of the weaker side.

The Effects of Tensile Properties on Plane Strain Stretchability of Automotive Steel Sheets (인장특성이 자동차용강판의 평면변형장출성에 미치는 영향)

  • 김영석;박기철;김선원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2676-2683
    • /
    • 1993
  • Plane strain punch stretching test(PSST) was performed for various automotive steel sheets. To clarify the effect of tensile properties on plane strain stretchability, the limiting punch height(LPH) values were obtained in plane strain punch stretching test and related to the tensile properties of the materials. The results show that the total elongation El and work hardening exponent n compared to other parameters obtained from tensile test well correlate with the LPH value. In comparision with the Erichsen test and LDH test the PSST can be statistically used as an alternative in assessing the stamping formability of automotive steel sheets with the advantages of good reproducibility and easy testing method.

Effect of Strain Rate and Pre-strain on Tensile Properties of Heat-treated A5082 and A6060 Aluminium Wrought Alloys (열처리한 A5082와 A6060합금의 인장특성에 미치는 변형율속도 및 예비변형율의 영향)

  • Lee, Choongdo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.4
    • /
    • pp.161-172
    • /
    • 2020
  • The tensile property of A5082 and A6060 aluminium wrought alloys was investigated, in terms of the strain rate sensitivity on alloy conditions by heat treatment and bake hardenability on pre-strain prior to strain ageing. The tensile test was carried out in a range of strain rate of 4.17 × 10-5 s-1 ~ 4.17 × 10-5 s-1 in room temperature and the nominal range of pre-strain was 3.0 ~ 10.5%. The tensile deformation of A5082 alloys is characterized as typical case of dynamic strain ageing with negative strain rate sensitivity for all conditions, and the tensile strength indicates a similar level regardless of alloy conditions, except only in full annealed condition. The stress-relief annealing on A6060 alloys can induce practical decrease in strength level of over approximately 100 MPa without any ductility loss, compared to as-rolled condition, while a full annealed and aged condition leads remarkable strengthening effect with the decrease of tensile elongation. Additionally, the bake hardenability of A5082 alloy by strain ageing indicates a negative dependence upon the increase of pre-strain, while A6060 alloy exhibits a positive sign even in low level relatively compared with conventional SPCC.

Temperature and Strain Rate Dependent Tension Properties of Stainless Steel-Aluminum-Magnesium Multilayered Sheet Fabricated by Roll Bonding (롤 아연된 STS-Al-Mg 이종금속판재의 온도와 변형률속도에 따른 1축인장 변형특성)

  • Hwang, B.K.;Lee, K.S.;Hong, S.E.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • Multilayer(clad) sheets, composed of two or more materials with different properties, are fabricated using the roll-bonding process. A good formability is an essential property for a multilayered sheet in order to manufacture parts by plastic deformation. In this study, the influences of temperature and strain rate on the plastic properties of stainless steel-aluminum-magnesium multilayered(STS-Al-Mg) sheets were investigated. Tensile tests were performed at various temperatures and strain rates on the multilayered sheet and on each separate layer. Fracture of the multilayered sheet was observed to be temperature-dependent. At the base temperature of $200^{\circ}C$, all materials fractured simultaneously. At lower temperatures, the Mg alloy sheet fractured earlier than the other materials. Conversely, the other materials fractured earlier than the Mg alloy sheet at higher temperatures. The uniform and total elongations of the multilayered sheet were observed to be higher than that of each material at a temperature of $250^{\circ}C$. Larger uniform elongations were obtained for higher strain rates at constant temperature. The same trend was observed for the Mg alloy sheet, which exhibited the lowest elongation among the three materials. The tensile strengths and elongations of the single layer sheets were compared to those of the multilayer material. The strength of the multilayered sheet was successfully calculated by the rule of mixture from the values of each single layer. However, no simple correlation between the elongation of each layer and that of the multilayer was obtained.

Evaluation of Axial Strains of Reinforced Concrete Columns (철근콘크리트 기둥의 축방향 변형률 평가)

  • Lee, Jung-Yoon;Kim, Min-Ok;Kim, Hyung-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • The longitudinal axial strain in the plastic hinge region of reinforced concrete (RC) columns influences on the structural behavior of RC structures subjected to reversed cyclic loading. This strain decreases the effective compressive strength of concrete and increases the lateral displacements between stories by causing the elongation of member length. This paper investigated the effects of the axial force on the elongation of a RC member by using a sectional analysis of RC members. The analytical and experimental results indicated that the axial force decreased the axial strain in the plastic hinge region of RC columns. In this study, a model was proposed to predict the axial strain of RC columns. The proposed model considering the effects of axial force ratio consisted of three path types ; Path 1-loading region, Path 2-unloading region, and Path 3-reversing cyclic loading region. The axal strains predicted by the proposed model were compared with the test results of RC columns with various axial force ratios, and agreed reasonably with the observed longitudinal strains.

Analysis on Deformation Behavior of High Strength Steel using the Finite Element Method in Conjunction with Constitutive Model Considering Elongation at Yield Point (항복점연신이 고려된 유한요소 해석을 통한 고강도강의 변형 거동 연구)

  • Yoon, Seung Chae;Moon, Man Been;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.598-604
    • /
    • 2010
  • Tensile tests are widely used for evaluating mechanical properties of materials including flow curves as well as Young's modulus, yield strength, tensile strength, and yield point elongation. This research aims at analyzing the plastic flow behavior of high strength steels for automotive bodies using the finite element method in conjunction with the viscoplastic model considering the yield point elongation phenomenon. The plastic flow behavior of the high strength steel was successfully predicted, by considering an operating deformation mechanism, in terms of normalization dislocation density, and strain hardening and accumulative damage of high strength steel using the modified constitutive model. In addition, the finite element method is employed to track the properties of the high strength steel pertaining to the deformation histories in a skin pass mill process.

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4134-4145
    • /
    • 2023
  • This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.