• Title/Summary/Keyword: elevation correction

Search Result 115, Processing Time 0.026 seconds

Experimental Analysis on the Motion Response of a Container Ship in Irregular Head Waves (콘테이너선의 불규칙파 중 운동응답에 대한 실험적 고찰)

  • S.Y.,Hong;S.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • This paper presents the results of seakeeping tests in a container ship model in irregular head waves. A time domain signal generating procedure is devised so that the wave maker behaves in accordance with the specified wave spectrum. The surface elevation of generated waves is measured and analysed to render the recorded wave spectrum for comparison with the specified one. Correction is made to the time domain signal until the differences between the two spectra become negligible. The motion responses and vertical acceleration of the self-propelled ship model are measured and analysed by both the spectral and the double amplitude methods. The two methods give nearly same statistical values. Finally the recorded spectra are compared with those calculated from the frequency domain motion analysis to show the credibility of the experimental results.

  • PDF

Quality Monitoring Comparison of Global Positioning System and BeiDou System Received from Global Navigation Satellite System Receiver

  • Son, Eunseong;Im, Sung-Hyuck
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, we implemented the data quality monitoring algorithm which is the previous step for real-time Global Navigation Satellite System (GNSS) correction generation and compared Global Positioning System (GPS) and BeiDou System (BDS). Signal Quality Monitoring (SQM), Data QM, and Measurement QM (MQM) that are well known in Ground Based Augmentation System (GBAS) were used for quality monitoring. SQM and Carrier Acceleration Ramp Step Test (CARST) of MQM result were divided by satellite elevation angle and analyzed. The data which are judged as abnormal are removed and presented as Root Mean Square (RMS), standard deviation, average, maximum, and minimum value.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.

Development of Automatic Airborne Image Orthorectification Using GPS/INS and LIDAR Data (GPS/INS와 LIDAR자료를 이용한 자동 항공영상 정사보정 개발)

  • Jang Jae-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.693-699
    • /
    • 2006
  • Digital airborne image must be precisely orthorectified to become geographical information. For orthorectification of airborne images, GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) elevation data were employed. In this study, 635 frame airborne images were produced and LIDAR data were converted to raster image for applying to image orthorectification. To derive images with constant brightness, flat field correction was applied to images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated by collecting 50 ground control points from arbitrary five images and LIDAR intensity image. As validation result, RMSE (Root Mean Square Error) was 0.387 as almost same as only two times of pixel spatial resolution. It is possible that this automatic orthorectification method of airborne image with higher precision is applied to airborne image industry.

Generation of Topographic Map Using GeoEye-1 Satellite Imagery for Construction of the Jangbogo Antarctic Station (GeoEye-1 위성영상을 이용한 남극의 장보고기지 건설을 위한 지형도 제작)

  • Kim, Eui-Myoung;Hong, Chang-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2011
  • Construction of the Jangbogo antarctic station was planned, and it requires detailed information on topography of the area around the station. The purpose of this research is to generate the topographic map to construct the Jangbogo antarctic station using the satellite image. To do this, surveying and pre-test of equipment were conducted. In addition, for sensor modeling of the GeoEye-1 satellite image, RPC-bias correction was done, and it showed that at least two control points are required. In generating the map, a 1/2,500 scale was deemed suitable in consideration of resolution of the image and the fact that supplementary topographic surveying would be impossible. In order to provide detailed information on the topography around the Jangbogo station, the digital elevation model based on image matching was created, and compared with GPS-RTK data, accuracy of vertical location about 0.6m was exhibited.

A Study on the Stereo Image Map Generation of Chuncheon Area using Satellite Overlay Images (위성영상을 이용한 춘천지역의 3차원 입체영상지도 생성에 관한 연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • Satellite remote sensing images have much more information compared to a paper map. But these images are generally handled as particular image format gained from optical sensor, and must be processed and analyzed by computer with high priced digital image processing system. For the extraction of digital elevation model(DEM) from satellite image, we used the overlay image by SPOT-3 of Chuncheon area at the Kangwon province. According to the image condition, the precious geometric correction, the bundle adjustment for ortho-image generation and the stereo image mapping by several technical approaches were processed. So that we developed the methods of automatic DEM extraction and efficient stereo image map generation which can improve the digital image processing steps. Also, we applied the multiple direction birdeye view image for modeling and analysis using the remotely sensed overlay images with high resolution.

  • PDF

Technology Trend in Synthetic Aperture Radar (SAR) Imagery Analysis Tools (SAR(Synthetic Aperture Radar) 영상 분석도구 개발기술 동향)

  • Lee, Kangjin;Jeon, Seong-Gyeong;Seong, Seok-Yong;Kang, Ki-mook
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.268-281
    • /
    • 2021
  • Recently, the synthetic aperture radar (SAR) has been increasingly in demand due to its advantage of being able to observe desired points regardless of time and weather. To utilize SAR data, first of all, many pre-processing such as satellite orbit correction, radiometric calibration, multi-looking, and geocoding are required. For analysis of SAR imagery such as object detection, change detection, and DEM(Digital Elevation Model), additional processings are needed. These pre-processing and additional processes are very complex and require a lot of time and computational resources. In order to handle the SAR images easily, the institutions that use SAR images develop analysis tools and provide users. This paper introduces the function and characteristics of representative SAR imagery analysis tools.

The antenna azimuth correction method for a special purpose mobile video terminal tracking antenna system implementation (특수목적을 위한 이동형 영상 터미널 장비의 추적안테나 시스템에 적용하기 위한 방위각보정 알고리즘 구현)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2541-2546
    • /
    • 2013
  • In this paper, we proposed on the azimuth correction method for a line-of-sight data-link tracking antenna system. Tracking antenna system is essential to maintain line-of-sight between moving object and data-link equipment. In order to calculate the azimuth and elevation between the moving object and antenna system, we used GPS data. also to match the each coordinate systems, we used geomagnetic sensor or beacon. However, the geomagnetic disturbance-prone terrain in places difficult to correct calibration. The first step, finds the location of the strongest RF signal, we should remember the difference between the reference point and the detected position of the antenna. The second step, we could communicate each other. And the azimuth angle is calculated by GPS values. Despite the geomagnetic interference, we can correct the azimuth angle quickly and easily.

Compression of Terrain Data using Integer Wavelet Transform (IWT) and Application on Gravity Terrain Correction (정수웨이블릿변환(IWT)을 이용한 지형 자료의 압축 및 정밀 지형 효과 계산을 위한 활용 방법 고찰)

  • Chung, Hojoon;Lee, Heuisoon;Oh, Seokhoon;Park, Gyesoon;Rim, Hyoungrea
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.69-80
    • /
    • 2013
  • Terrain data is one of important basic data in various areas of Earth science. Recently, finer DEM data is available, which necessary to develop a method that deals with such huge data efficiently. This study was conducted on the lossless compression of DEM data and efficient partial reconstruction of terrain information from compressed data. In this study, we compressed the wavelet coefficients of DEM, obtained from integer wavelet transform (IWT) by entropy encoding. CDF (Cohen-Daubechies-Feauveau) 3.5 wavelet showed the best compression ratio of about 45.4% and the optimum decomposition level was 3. Results also showed that a small region of terrain could be restored from the inverse wavelet transform with a part of the wavelet coefficients that are related to such region instead of whole reconstruction. We discussed the potential applications of the terrain data compression for precise gravity terrain correction.

A Case of Osmotic Demyelination Syndrome in a Patient with Severe Hyponatremia Complicated by Rhabdomyolysis (횡문근융해증이 합병된 중증 저나트륨혈증 환자에서 발생한 삼투성 탈수초 증후군 1예)

  • Lee, Da Young;Hong, Chang Woo;Lee, In Hee
    • Journal of Yeungnam Medical Science
    • /
    • v.30 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • Hyponatremia, the most common electrolyte disorder, has been rarely reported as causing rhabdomyolysis. Osmotic demyelination syndrome (ODS), a demyelinating disease of the central pons and/or other areas of the brain, is infrequently reported as associated with rapid correction of hyponatremia. This paper reports a case of ODS after correction of severe hyponatremia complicated by rhabdomyolysis. A 47-year-old female with a history of chronic alcoholism presented herself at the hospital with altered consciousness after three days of nausea and vomiting. She was on a thiazide diuretic for essential hypertension. Her blood tests upon her hospital admission showed hyponatremia ($Na^+$ 98 mEq/L), hypokalemia ($K^+$ 3.0 mEq/L), and elevation of her serum creatine phosphokinase (3,370 IU/L) with an increase in her serum myoglobin level 11,267 ng/mL). She was treated with intravenous fluid therapy that included isotonic and hypertonic salines along with potassium chloride. She became more alert, and her neurological condition gradually improved after the first five days of her therapy. On the ninth day after her admission, she developed progressive quadiaresis associated with dysarthria, dysphagia, and dystonia despite the resolution of her hyponatremia. Magnetic resonance imaging of her brain on 16th day revealed symmetrical areas of signal hyperintensity in her central pons, basal ganglia, and precentral gyrus in T2-weighted images, which are consistent with ODS. Her neurological symptoms steadily improved after six weeks with only supportive treatment and rehabilitation.