• 제목/요약/키워드: elevated-temperature fatigue

검색결과 73건 처리시간 0.023초

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Ni기 초내열합금 GTD111 DS의 고온 저주기 피로수명 예측 (Life Prediction of Low Cycle Fatigue for Ni-base Superalloy GTD111 DS at Elevated Temperature)

  • 김진열;윤동현;김재훈;배시연;장성용;장성호
    • 대한기계학회논문집A
    • /
    • 제41권8호
    • /
    • pp.765-770
    • /
    • 2017
  • Ni기 초내열합금인 GTD111 DS는 가스터빈 블레이드에 사용된다. 본 논문에서는 실제 운전조건과 유사한 조건을 설정하여 GTD111 DS의 저주기 피로시험을 실시하였다 상온, $760^{\circ}C$, $870^{\circ}C$의 온도범위와 다양한 변형률에서 저주기 피로시험을 수행하였다. 실험결과 총 변형률이 증가함에 따라 피로수명은 감소하였다. 상온 및 $760^{\circ}C$에서는 주기적 경화반응이 나타났으며 $870^{\circ}C$에서는 주기적 연화반응이 나타났다. $870^{\circ}C$에서 응력완화 현상은 유지시간에 따른 크리프의 영향으로 나타났다. 피로수명과 총 변형률의 관계는 Coffin-Manson 식을 통해 얻었다. 파단면은 SEM을 통해 초기균열 및 피로진전지역을 관찰하였다.

Fatigue Life of the Repair TIG Welded Hastelloy X Superalloy

  • SIHOTANG, Restu;CHOI, Sang-Kyu;PARK, Sung-Sang;BAEK, Eung-Ryul
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.26-30
    • /
    • 2015
  • Hastelloy X in this study was applied in jet engine F-15 air fighter as shroud to isolate the engine from outer skin. After 15 years operation at elevated temperature the mechanical properties decreased gradually due to the precipitation of continues second phases in the grain boundaries and precipitated inside the grain. The crack happened at the edge of the shroud due to the thermal and mechanical stress from jet engine. Selective TEM analysis found that the grain boundaries consist of $M_{23}C_6$ carbide, $M_6$ Ccarbide and small percentage of sigma(${\sigma}$) phase. Furthermore, it was confirmed the nano size of ${\sigma}$ and miu (${\mu}$) phase inside the grain. In this study, it was investigated the microstructure of the degraded shroud component and HAZ of repair welded shroud. In the HAZ, it was observed the dissolution of the $M_{23}C_6$ carbides and smaller precipitates, the migration of the undissolved larger $M_{23}C_6$ carbide and $M_6$ Ccarbide. It is also observed the liquation due to the simply melt of the segregated precipitates in the grain boundaries. Interestingly, the segregated second phases which simply melt in the grain boundaries more easily happened at higher heat input welding condition. High temperature tensile test was done at $300^{\circ}C$, $700^{\circ}C$ and $900^{\circ}C$. It was obtained that the toughness of welded sample is lower compare to the non-welded sample. The solution heat treatment at $1170^{\circ}C$ for 5 minutes was suggested to obtain a better mechanical properties of the shroud. The high cycle fatigue number of the repair welded shroud shows a much lower compare to the shroud. In addition, the high cycle fatigue number at room temperature after solution heat treatment was almost double compare to the before solution heat treatment under 420-500MPa stress amplitude. However, the high cycle fatigue number of repaired welded sample was shown a much lower compare to the non- welded shroud and solution treated shroud. One of the main reasons to decrease the tensile strength and the high cycle fatigue properties of the repair welded shroud is the formation of the liquid phase in HAZ.

리올러지 모델을 이용한 열적 기계적 변형 거동 모사 (A Description of Thermomechanical Behavior Using a Rheological Model)

  • 이금오;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.757-764
    • /
    • 2006
  • Isothermal cyclic stress-strain deformation and thermomechanical deformation (TMD) of 429EM stainless steel were analyzed using a rheological model employing a bi-linear model. The proposed model was composed of three parameters: elastic modulus, yield stress and tangent modulus. Monotonic stress-strain curves at various temperatures were used to construct the model. The yield stress in the model was nearly same as 0.2% offset yield stress. Hardening relation factor, m, was proposed to relate cyclic hardening to kinematic hardening. Isothermal cyclic stress-strain deformation could be described well by the proposed model. The model was extended to describe TMD. The results revealed that the hi-linear thermomechanical model overestimates the experimental data under both in-phase and out-of-phase conditions in the temperature range of $350-500^{\circ}C$ and it was due to the enhanced dynamic recovery effect.

PGSFR 소듐냉각고속로 원자로용기 설계 및 구조건전성 평가 (Structural design and integrity evaluations for reactor vessel of PGSFR sodium-cooled fast reactor)

  • 구경회;김성균
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.70-77
    • /
    • 2016
  • In this paper, the structural design and integrity evaluations for a reactor vessel of PGSFR sodium-cooled fast reactor(150MWe) are carried out in compliance with ASME BPV III, Division 5 Subsection HB. The reactor vessel is designed with a direct contact of primary sodium coolant to its inner surface and has a double vessel concept enclosing by containment vessel. To assure the structural integrity for 60 years design lifetime and elevated operating temperature of $545^{\circ}C$, which can invoke creep and creep-fatigue damage, the structural integrity evaluations are carried out in compliance with the ASME code rules. The design loads considered in this evaluations are primary loads and operation thermal cycling loads of normal heat-up and cool-down. From the evaluations, the PGSFR reactor vessel satisfies the ASME code limits but it was found that there is a little design margin of creep damage for inner surface at the region of cold pool free surface.

하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가 (Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process)

  • 손영준;이기현;김국진;한중원;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF

마찰 용접부의 고온 회전굽힘 피로 강도에 미치는 용접후 시효열처리의 영향에 관한 연구 (Effects of Postweld Aging Treatment on Rotary Bending Fatigue strength of Friction Welded Joints at Elevated Temperature)

  • ;오세규;임우조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제7권2호
    • /
    • pp.36-49
    • /
    • 1983
  • 최근 높은 경제성과 용접성의 우수성에 의한 마찰 용접의 응용에 있어서 내열.내식 재료가 개스터어빈, 기관, 핵 발전기등의 기계 부품 생산 공업에 널리 이용되고 있다. 따라서 이종내열 합금강의 마찰 용접된 부품을 이용함에 있어서 내식.내마모 및 용접성 뿐만 아니라 고온 피로 강도와 크리이프 강도 등의 복합 특성에 관한 연구가 요구되고 있다. 본 연구에서는 마르텐사이트계 실크롬 내열강과 오오스테나이트계 닉켈크롬 스테인레스강의 이종 내식.내열 합금강의 최적 용접조건하에서 마찰 용접된 후의 시효 열처리가 용접재의 700 .deg.C 고온 회전 굽힘 피로강도 특성에 미치는 영향에 관하여 실험과 강도해석에 의해 조사되었고 용접후의 용체화 처리와 시효 열처리법에 의한 내열강 마찰 용접강도 개선법을 개발코저한 것이다.

  • PDF

Rapidly Solidified Powder Metallurgy Mg-Zn-RE Alloys with Long Period Order Structure

  • Kawamura, Yoshihito
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1269-1270
    • /
    • 2006
  • Mg-Zn-RE alloys had a novel lond period stacking ordered (LPO) structure. Their rapidly solidified powder metallurgy (RS P/M) alloys exhibited a combination of high strength and god ductility (tensile yield strength above 550 MPa and elongation above 5%). The LPO Mg-Zn-RE RS P/M alloys had high elevated temperature strength (tensile yield strength above 380 MPa at 473 K) and exhibited a high-strain-rate superplasticity at higher temperatures. In Japan, a national project for developing high strength LPO Mg-Zn-RE RS P/M alloys has started at 2003 for 5 years, which is founded by the Ministry of Economy, Trade and Industry (METI) of Japan. In the national project, project targets in materials performances have been achieved. The developed LPO Mg-Zn-RE RS P/M alloys exhibited higher tensile yield strength, fatigue strength and corrosion resistance than high strength aluminum alloys of extra-super-duralumin (7075-T6).

  • PDF

304스테인리스강의 고온표면미소 균열의 거동에 관한 기초적 연구 (Behaviors of surface micro-crack of 304 stainless steel at elevated temperature)

  • 서창민;이정주;김영호
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1320-1326
    • /
    • 1988
  • 본 연구에서는 파괴역학적인 해석법과 표면레프리카법을 확장, 적용시켜 피로 -크리프하의 유지시간에 따른 작은 표면균열의 분포상태와 이의 합체, 성장 및 밀도변 화특성을 해석하여 기초적 자료를 얻는다.

보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가 (Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header)

  • 신규인;윤기봉
    • 한국안전학회지
    • /
    • 제24권2호
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.