• Title/Summary/Keyword: elemental analysis

Search Result 1,138, Processing Time 0.037 seconds

Degradation of Plant Lignin with The Supercritical Ethanol and Ru/C Catalyst Combination for Lignin-oil (초임계 에탄올과 루테늄 촉매에 의한 초본 리그닌의 오일화 반응)

  • Park, Jeesu;Kim, Jae-Young;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.355-363
    • /
    • 2015
  • Asian lignin was efficiently depolymerized with supercritical ethanol and Ru/C catalyst at various reaction temperature (250, 300, and $350^{\circ}C$). Lignin-oil was subjected to several physicochemical analyses such as GC/MS, GPC, and elemental analysis. With increasing reaction temperature, the yield of lignin-oil decreased from 89.5 wt% to 32.1 wt%. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of lignin-oil obtained from $350^{\circ}C$ (547Da, 1.49) dramatically decreased compare to those of original asian lignin (3698Da, 2.68). This is a clear evidence of lignin depolymerization. GC/MS analysis revealed that the yield of monomeric phenols involving guaiacol, 4-ethyl-phenol, 4-methylguaiacol, syringol, and 4-methysyringol increased with increasing reaction temperature, and these were mostly produced with applying hydrogen gas and Ru/C catalyst (76.1 mg/g of lignin). Meanwhile, the carbon content of lignin-oil increased whereas the oxygen content decreased with increasing reaction temperature, suggesting that hydrodeoxygenation was significantly enhanced at higher temperature.

Formation of New Thorium (IV) Complexes with Crown Ethers (새로운 Thorium (IV)-Crown Ether 착물형성)

  • Jung, Hak-Jin;Jung, Oh-Jin;Suh, Hyouck-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.258-270
    • /
    • 1987
  • A series of new thorium nitrate complexes with crown ethers have been synthesized from the reaction of the hydrated thorium nitrate, with the appropriate crown ethers of different cavity sizes in various solvents such as methanol, ethanol, butanol, methylacetate, acetone, tetrahydrofuran and acetylacetone. CHN elemental analysis, ICPAS, thermal analysis and Karl-Fischer method have been used to characterize their compositions, and the spectroscopic methods of IR, UV, $^1H-NMR$, and X-ray diffraction have been employed to determine the structures and solvolysis phenomena of these complexes. and the electrical conductances were measured in DMSO, and water solvent. The solvolysis have been observed only in the complexes synthesized in acetylacetone solvent. In the solvated complexes of 15-crown-5 and 18-crown-6, the mole ratio of $Th^{4+}$: ligand : acetylacetone is found to be 1:1:1, but in the non-solvated complexes of 12-crown-4 and 15-crown-5, the mole ratios of Th:L are 1:2 and 2:3, respectively, and that in the complexes of both 18-crown-6 and dicyclohexano-18-crown-6 is 1:1. All complexes which were not solvated have shown $n{\to}{\sigma}^{\ast}$ electronic transitions of crown ether whereas complexes solvated have exhibited both $n{\to}{\sigma}^{\ast}$ of crown ether and $n{\to}{\pi}^{\ast}$ transitions of acac. The dissociation mole ratio of $Th^{4+}$ and nitrate ion is found to be 1:1 in aprotic solvent, and 1:4 in protic solvent like water.

  • PDF

Spectroscopic Analysis of Silica Nanoparticles Modified with Silane Coupling Agent (실란 커플링제에 의해 표면이 개질된 실리카 나노입자의 분광학적 분석)

  • Song, Seong-Kyu;Kim, Jung-Hye;Hwang, Ki-Seob;Ha, Ki-Ryong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • In this study, we used 3-(trimethoxysilyl)propylmethacrylate(MPS) silane coupling agent for surface modification of silica nanoparticles. We studied effects of reaction conditions such as solvent pH, MPS hydrolysis time, reaction time, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, on the surface modification reactions of silica nanoparticles. Fourier Transform Infrared Spectroscopy(FTIR), Elemental Analysis(EA) and solid state crosspolarization magic angle spinning(CP/MAS) Nuclear Magnetic Resonance Spectroscopy(NMR) techniques were used to determine the type and the degree of surface modification. We found MPS reacts preferentially with Si-OH groups of the silica nanoparticles as monomeric form at solvent pH = 4.5. But increasing hydrolysis time of MPS from 30 mins to 90 mins, and molar ratio of MPS to Si-OH groups on silica nanoparticle surfaces, we found that MPS reacts preferentially with Si-OH groups of the silica nanoparticles as oligomeric form.

Effect of liners and primers on tensile bond strength between zirconia and resin-based luting agent

  • Jo, Eun-Hye;Huh, Yoon-Hyuk;Ko, Kyung-Ho;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.374-380
    • /
    • 2018
  • PURPOSE. The effect of silica-based glass-ceramic liners on the tensile bond strength between zirconia and resin-based luting agent was evaluated and compared with the effect of 10-methacryloyloxydecyl dihydrogen phosphate (MDP)-containing primers. MATERIALS AND METHODS. Titanium abutments and zirconia crowns (n = 60) were fabricated, and the adhesive surfaces of the specimens were treated by airborne-particle abrasion. The specimens were divided into 5 groups based on surface treatment: a control group, 2 primer groups (MP: Monobond Plus; ZP: Z Prime Plus), and 2 liner groups (PL: P-containing Liner; PFL: P-free Liner). All specimens were cemented with self-adhesive resin-based luting agent. After 24-hour water storage and thermocycling (5,000 cycles, $5^{\circ}C/55^{\circ}C$), the tensile bond strength was measured using a universal testing machine. Failure mode analysis and elemental analysis on the bonding interface were performed. The data were analyzed using Kruskal-Wallis test, Dunn's post hoc test, and Fisher's exact test. RESULTS. The liner groups and primer groups showed significantly higher tensile bond strengths than that of the control group (P<.05). PFL showed a significantly higher tensile bond strength than the primer groups (P<.05). The percentage of mixed failure was higher in the primer groups than in the control group (P<.001), and all the specimens showed mixed failure in the liner groups (P<.001). A chemical reaction area was observed at the bonding interface between zirconia and liner. CONCLUSION. The application of liner significantly increased the tensile bond strength between zirconia and resin-based luting agent. PFL was more effective than MDP-containing primers in improving the tensile bond strength with the resin-based luting agent.

Quantitative analysis of formation of oxide phases between SiO2 and InSb

  • Lee, Jae-Yel;Park, Se-Hun;Kim, Jung-Sub;Yang, Chang-Jae;Kim, Su-Jin;Seok, Chul-Kyun;Park, Jin-Sub;Yoon, Eui-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.162-162
    • /
    • 2010
  • InSb has received great attentions as a promising candidate for the active layer of infrared photodetectors due to the well matched band gap for the detection of $3{\sim}5\;{\mu}m$ infrared (IR) wavelength and high electron mobility (106 cm2/Vs at 77 K). In the fabrication of InSb photodetectors, passivation step to suppress dark currents is the key process and intensive studies were conducted to deposit the high quality passivation layers on InSb. Silicon dioxide (SiO2), silicon nitride (Si3N4) and anodic oxide have been investigated as passivation layers and SiO2 is generally used in recent InSb detector fabrication technology due to its better interface properties than other candidates. However, even in SiO2, indium oxide and antimony oxide formation at SiO2/InSb interface has been a critical problem and these oxides prevent the further improvement of interface properties. Also, the mechanisms for the formation of interface phases are still not fully understood. In this study, we report the quantitative analysis of indium and antimony oxide formation at SiO2/InSb interface during plasma enhanced chemical vapor deposition at various growth temperatures and subsequent heat treatments. 30 nm-thick SiO2 layers were deposited on InSb at 120, 160, 200, 240 and $300^{\circ}C$, and analyzed by X-ray photoelectron spectroscopy (XPS). With increasing deposition temperature, contents of indium and antimony oxides were also increased due to the enhanced diffusion. In addition, the sample deposited at $120^{\circ}C$ was annealed at $300^{\circ}C$ for 10 and 30 min and the contents of interfacial oxides were analyzed. Compared to as-grown samples, annealed sample showed lower contents of antimony oxide. This result implies that reduction process of antimony oxide to elemental antimony occurred at the interface more actively than as-grown samples.

  • PDF

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Microstructure Analysis of Rabbit and Chicken Femurs by Light Microscopy and Transmission Electron Microscopy (광학현미경과 투과전자현미경을 이용한 토끼와 닭 대퇴골의 미세구조 분석)

  • Kim, Chang-Yeon;Kim, Eun-Kyung;Jeon, Tae-Hoon;Nam, Seung-Won;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.40 no.3
    • /
    • pp.155-162
    • /
    • 2010
  • Bone is a hierarchically structured composite material which has been well studied by the materials engineering community because of its unique structure and mechanical properties. Bone is a laminated organic-inorganic composite composed of primarily hydroxyapatite, collagen and water. The main mineral that gives bone's hardness is calcium phosphate, which is also known as hydroxyapatite. Light microscopy (LM) and transmission electron microscopy (TEM) were used to study the structure of femurs from chicken and rabbit. The elemental analysis was used to search variation in the distribution of calcium, potassium and oxygen in the femur. Current investigation focused on two structural scales: micro scale (arrangement of compact bone) and nano scale (collagen fibril and apatite crystals). At micro scale, distinct difference was found in microstructures of chicken femur and rabbit femur. At nano scale, we analyzed the shape and size of apatite crystals and the arrangement of collagen fibril. Consequently, femurs of chicken and rabbit had very similar chemical property and structures at nano scale despite of their different species.

Synthesis of Aminated Poly(ether sulfone) as Anion Exchanger and its NO Gas Adsorption (Aminated Poly(ether sulfone)의 합성과 NO 가스의 흡착특성)

  • Son, W.K.;Park, S.G.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.857-862
    • /
    • 1999
  • Aminated poly(ether sulfone)(APES) was prepared by amination of nitrated poly(ether sulfone)(NPES) after poly(ether sulfone)(PES) was nitrated with mixed acid of nitric acid and sulfuric acid(sulfuric acid is a catalyst). As a results of the FT-IR spectrum analysis, the nitration of PES was confirmed by the bands of asymmetric stretching and symmetric stretching of $NO_2$ group at 1537 and $1351cm^{-1}$, respectively. Also when the NPES was aminated, it was disappeared to absorbance peaks of $NO_2$ group. And It was confirmed by the bands of asymmetric stretching and symmetric stretching of $NH_2$ group at 3470 and $3374cm^{-1}$, respectively. The optimum condition of the nitration on PES(5 g; 21.55 mmol.) was 12 hr of reaction time, $120^{\circ}C$ of reaction temperature, nitric acid of 28.00 mmol. and sulfuric acid of 52.00 mmol. As a result of the elemental analysis of APES, reapeating unit per amine groups were induced to 0.89. The adsorption rate of NO gas was lower than that of silica gel and active carbon. But the adsorption capacity of NO gas was higher than that of these. When the APES was absorbed to NO gas, the chemical adsorption rate was lower than the physical adsorption rate. But the chemical adsorption capacity of it was higher than physical adsorption capacity.

  • PDF

Treatment of Spent ion-Exchange Resins from NPP by Supercritical Water Oxidation(SCWO) Process (초임계수 산화공정에 의한 원전 폐수지 처리기술)

  • Kim, Kyeong-Sook;Son, Soon-Hwan;Song, Kyu-Min;Han, Joo-Hee;Han, Kee-Do;Do, Seung-Hoe
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • The spent cationic exchange resins and anionic exchange resins were separated from mixed spent exchange resins by a fluidized bed gravimetric separator. The separated resins were identified by an elemental analysis and thermogravimetric analysis. The each test sample was prepared by diluting the slurry made by wet ball milling the cationic exchange resins and the anionic exchange resins separated as a spherical granular form for 24 hours. The resulting test samples showed a slurry form of less than $75{\mu}m$ of particle size and 25,000ppm of $COD_{cr}$. The decomposition conditions of each test samples from a thermal power plant were obtained with a lab-scale(reactor volume : 220mL) supercritical water oxidation(SCWO) facility. Then pilot plant(reactor volume : 24 L) tests were performed with the test samples from a thermal power plant and a nuclear power plant successively. Based on the optimal decomposition conditions and the operation experiences by lab-scale facility and the pilot plant, a commercial plant(capacity : 150kg/h) can be installed in a nuclear power plant was designed.

  • PDF

A Study on Applicability of Mercury-contaminated Tailing and Soil Remediation around abandoned Mines using Washing Process (세척공법을 이용한 광산주변 수은 함유 오염물질 처리 적용성 평가)

  • Kwon, Yo Seb;Park, So Young;Koh, Il Ha;Ji, Won Hyun;Lee, Jin Soo;Ko, Ju In
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • This study was carried out to evaluate the applicability of the soil washing process to remediation mercury-contaminated mine tailing or solid material (soil and sediments etc.) around abandoned mines. First, the physicochemical characteristics of mine tailing were analyzed through particle size analysis and sequential extraction. Secondly, laboratory scale washing experiments were performed using hydrochloric acid, nitric acid, potassium iodide and sodium thiosulfate. As a results of particle size analysis, mine tailing particle were concentrated below 40 mesh and the particle size below 200 mesh was the most analyzed. As a result of sequential extraction, elemental mercury fraction was analyzed as the highest with 69.12%, with strongly bound fraction 15.25% and residual and HgS fractions 11.97%, respectively. Laboratory scale washing experiments showed low applicability for nitric acid and sodium thiosulfate solutions. In case of hydrochloric acid solution, it was analyzed that mercury removal was possible at particle size of 200 mesh or more. Therefore, it is considered to be performed together with the physical sorting process. Potassium iodide solution was analyzed to have high washing efficiency at all concentrations and particle sizes. In particular, the mercury removal efficiency is high in the micro particles, and thus the applicability of the washing technology is the highest.