• Title/Summary/Keyword: element removal method

Search Result 92, Processing Time 0.032 seconds

A Finite Element Model of Melt Pool for the Evaluation of Selective Laser Melting Process Parameters (선택적 레이저 용융 공정의 공정변수 평가를 위한 용융풀 유한요소 모델)

  • Lee, Kanghyun;Yun, Gun Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.195-203
    • /
    • 2020
  • Selective laser melting(SLM) is one of the powder bed fusion(PBF) processes, which enables quicker production of nearly fully dense metal parts with a complex geometry at a moderate cost. However, the process still lacks knowledge and the experimental evaluation of possible process parameter sets is costly. Thus, this study presents a finite element analysis model of the SLM process to predict the melt pool characteristics. The physical phenomena including the phase transformation and the degree of consolidation are considered in the model with the effective method to model the volume shrinkage and the evaporated material removal. The proposed model is used to predict the melt pool dimensions and validated with the experimental results from single track scanning process of Ti-6Al-4V. The analysis result agrees with the measured data with a reasonable accuracy and the result is then used to evaluated each of the process parameter set.

Nonlinear structural finite element model updating with a focus on model uncertainty

  • Mehrdad, Ebrahimi;Reza Karami, Mohammadi;Elnaz, Nobahar;Ehsan Noroozinejad, Farsangi
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.549-580
    • /
    • 2022
  • This paper assesses the influences of modeling assumptions and uncertainties on the performance of the non-linear finite element (FE) model updating procedure and model clustering method. The results of a shaking table test on a four-story steel moment-resisting frame are employed for both calibrations and clustering of the FE models. In the first part, simple to detailed non-linear FE models of the test frame is calibrated to minimize the difference between the various data features of the models and the structure. To investigate the effect of the specified data feature, four of which include the acceleration, displacement, hysteretic energy, and instantaneous features of responses, have been considered. In the last part of the work, a model-based clustering approach to group models of a four-story frame with similar behavior is introduced to detect abnormal ones. The approach is a composition of property derivation, outlier removal based on k-Nearest neighbors, and a K-means clustering approach using specified data features. The clustering results showed correlations among similar models. Moreover, it also helped to detect the best strategy for modeling different structural components.

Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method (X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.

The Computer Simulation and Estimation of Membrane Mass Transfer Coefficients of Hollow Fiber Membrane G-L Contactors for SO2 Removal (SO2 제거를 위한 중공사막 기-액 접촉기의 모사 및 분리막 물질 전달 계수 추정)

  • Kim, Yong Kuk;Song, Hee Ouel;Lee, Hyung Keun;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.81-86
    • /
    • 2007
  • Hollow fiber membrane G-L contactors are widely used to remove $SO_2$ emitted from industrial facilities. In this work, the mathematical modeling and computer simulation for hollow membrane G-L contactors is carried out to analyze $SO_2$ absorption behavior in hollow fiber membranes. The model is solved with the finite element method using a commercial software. Investigated is the dependency of $SO_2$ removal efficiency and mass transfer characteristics on gas velocities, membrane mass transfer coefficients and physical properties of contactors. The membrane mass transfer coefficients are estimated by fitting the experimental data with the simulated $SO_2$ removal efficiencies. In addition, a design methodology of membrane contactors is suggested.

Evaluation for Progressive Collapse Resistance of a RC Flat Plate System Using the Static and Dynamic Analysis (정적 및 동적 해석을 통한 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능 평가)

  • Lee, Seon-Woong;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.245-252
    • /
    • 2011
  • Currently, the design guidelines for the prevention of progressive collapse are not available in Korea due to the lack of study efforts in progressive collapse resistance evaluation of RC flat plate system. Therefore, in this study, three types of analysis were conducted to evaluate the progressive collapse resistance of a RC flat plate system. A linear static analysis was carried out by comparing the demand-capacity ratio (DCR) differences of the systems using the alternate load path method, which is the guideline of GSA. A dynamic behavior was investigated by checking the vertical deflection after removal of the column using the linear dynamic analysis. Lastly, a maximum load factor was investigated using the nonlinear static analysis. The finite element (FE) analyses were conducted using various parameters to analyze the results obtained using effective beam width (EB) model and plate element FEM (PF) model. This study results showed that the strength contributions of the slab in the EB models are underestimated compared to those obtained from the PF models. Therefore, a detailed FE analysis considering the slab element is required to thoroughly estimate the progressive collapse resisting capacity of flat plate system. The scenario of the corner column (CC) removal is the most dangerous conditions where as the scenario of the inner column (IC) removal is the least dangerous conditions based on the consideration of various parameters. The analysis results will allow more realistic evaluations of progressive collapse resistance of RC flat plate system.

Influence of Die Geometry on Die-tip Buildup in Plastic Extrusion (플라스틱 파이프 압출시 금형 형상이 다이립 집적에 미치는 영향)

  • 서영성;최선웅
    • Transactions of Materials Processing
    • /
    • v.9 no.5
    • /
    • pp.486-493
    • /
    • 2000
  • Extrusion die-lip buildup has direct and negative impact on the properties of the final product. At the present time there is no absolute method of die-lip prevention. However, a Periodical shut down of extrusion line for the removal has been the general practice throughout the industry in concern. In this study the die-lip buildup was Investigated with a particular attention paid to the influence of die exit geometry and dimensions on the stresses produced at the point of die exit. To demonstrate the relationship between the stress state and the magnitude of the die-lip buildup, a method of virtual manufacturing was performed, assuming elastic-plastic material behavior for the high-density polyethylene under investigation. The overall numerical results suggested that the longer the die-land and/or the smaller the areal reduction of the die would reduce the tendency for the die-lip formation. Similarly, haying a fillet around the circumferential edge of the die exit would be favorable in decreasing the die-lip buildup.

  • PDF

A Study on Development Method for Early-Strength Concrete (콘크리트 조기강도 발현방법에 관한 연구)

  • Ryu, Jong-Hyun;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.681-684
    • /
    • 2008
  • The way to shorten a construction period is considered to an very important technology element as reducing the form work removal periods with promoting strength revelation own concrete. This study presents an experimental study on the development method, material for early strength concrete. The result is as follow : In OPC, the compressive strength has over 5MPa after 26hours at 20$^{\circ}C$ curing and another 36hours at 10$^{\circ}C$ curing. Used with early strength potland cement, the compressive strength has over 5MPa after 15hours at 20$^{\circ}C$ curing temperature and another 30hours at 10$^{\circ}C$ curing temperature.

  • PDF

Topology Optimization of Thermal Actuated Compliant Mechanisms (열 컴플라이언트 메커니즘의 위상 최적설계)

  • Lee, Won-Gu;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.434-439
    • /
    • 2010
  • A compliant mechanism is a mechanism that produces its motion by the flexibility of some or all of its members when input force or thermal load is applied. Whereas the topology optimizations based on homogenization and SIMP parameterization have been successfully applied for compliant mechanism design, ESO approach has been hardly considered yet for the optimization of these types of systems. In this paper, traditional ESO method is adopted to achieve the optimum design of a compliant mechanism for thermal load, since AESO method cannot consider the effect of both heat conduction and convection. Sensitivity number, a criterion for element removal in traditional ESO, was newly defined for input thermal loading. The procedure has been tested in numerical applications and compared with the results obtained by other methods to validate these approaches.

Thermal deformation and thermal stress analysis of pipe during pipe internal fluid freezing (배관의 결빙에 의한 열변형 및 열응력 해석)

  • Park, Yeong-Don;Byeon, Sang-Gyu;Gang, Beom-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • In case the systems have radioactivity, toxic liquid or expensive fluid, and have to be performed repair work at one point of the system pipe, the formation of an internal ice plug by the removal of heat from the pipe is often consideredas a useful method. In this procedure, an annular jacket is placed around the pipe, and the jacket is then filled with liquid Nitrogen(-196.deg. C). Thermal analysis by the finite element method based on the laboratory experiments has been constructed. The result of the finite element analysis on the experimental model shows to be reasonable, and thus the finite element analysis for different pipe size, material and thickness has been performed to see if the ice plugging procedure in various applications can be safely performed without possibility of damage to the pipe. It has been confirmed that in carbon steel pipes the maximum stress is found around the boundary of the freezing jacket, and the stress increases as pipe thickness increases, but the maximum stress shows no consistency along the increment of the pipe diameter. The maximum stresses appear lower than yield stress in carbon steel. It has been also shown that in stainless steel pipes the maximum stresses are also found around the boundary of the freezing jacket, but almost the same value in spite of different pipe size an thickness, and the maximum stresses show slightly higher than the yield stress of the stainless steel.