• Title/Summary/Keyword: element block

Search Result 448, Processing Time 0.037 seconds

Evaluation of Growth Characteristics and Forage Yield of Domestically Bred Silage Corn Varieties

  • Kim, Jong Geun;Yu, Young Sang;Wang, Li Li;Li, Yan Fen
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.146-154
    • /
    • 2022
  • This experiment was conducted to evaluate the growth characteristics and productivity of silage corn varieties developed in Korea. Corn cultivation was carried out using the experimental field in the Pyeongchang campus of Seoul National University (550 m above sea level). There have 10 domestic cultivars (Gwangpyeongok, Dacheongok, Yanganok, Jangdaok, Cheongdaok, Daanok, Sinhwangok, Sinhwangok II, Pyeonggangok, and Hwangdaok) with one imported cultivar (P1543) which tested as a control, and randomized block design with three replications. Among the 100-grains weight of the seeds, Dacheongok was the heaviest, and the germination rate for each variety was 74.6% on average, while that of Daanok and Sinhwangok were over 90%. Sinhwangok was the fastest in tasseling and silking date. The number of days required to be silking date was as slow as 85 days in Dacheongok, Cheongdaok and Pyeonggangok, and as fast as 80 days or less in Sinhwangok, Sinhwangok II and Hwangdaok. The plant height of P1543 was the highest as 344cm, and Hwangdaok and Daanok were short. In terms of the ratio of ears, Daanok had the highest rate of 60.18%, and Jangdaok and Dacheongok had the lowest. There was no significant difference in dry matter content in stover, but P1543 was generally higher in ear and total dry matter content. The dry matter yield was highest in P1543, and the yield of TDN was significantly higher in P1543 and Yanganok. There was a significant difference in the crude protein content of ears and the dry digestibility of stems (p<0.05), while there was no significant difference in the content of each part or element. Combining the above results, Yanganok was the highest in terms of yield, and Dacheongok, Sinhwangok and Pyeonggangok were also recommended for domestically grown corn varieties in the mountainous regions of Gangwon-do.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Study on Structural Integrity and Dynamic Characteristics of Knuckle Parts of KTX Anti-Roll Bar (KTX 고속열차 안티롤바 너클부의 동특성 및 구조 안전성 평가)

  • Jeon, Kwang Woo;Shin, Kwang Bok;Kim, Jin Woo;Jeong, Yeon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1035-1041
    • /
    • 2013
  • To evaluate the structural integrity and dynamic characteristic of the knuckle part of a KTX anti-roll bar, an experimental and a numerical approach were used in this study. In the experimental approach, the acceleration and strain data for the knuckle parts of the KTX and KTX-SANCHUN anti-roll bar were respectively measured to evaluate and compare its structural dynamic characteristics under the operating environments of the Honam line. In the numerical approach, the evaluation of its structural integrity was conducted using LS-DYNA 3D, and then, the reliability of the finite element model used was ensured by a comparative evaluation with the experiment. The numerical results showed that the stress and velocity field of the knuckle part composed of a layered structure of a thin steel plate and rubber were more moderate than those of the knuckle part made of only a thick steel block owing to the reduction of relative contact between the knuckle and the connecting rod. It was found that the knuckle part made of a thin steel plate and rubber was recommended as the best solution to improve its structural integrity resulting from the elastic behavior of the KTX anti-roll bar being enabled under a repeating external force.

Polyphase I/Q Network and Active Vector Modulator Based Beam-Forming Receiver For UAV Based Airborne Network (UAV 공중 네트워크를 위한 손실 없는 Polyphase I/Q 네트워크 및 능동 벡터 변조기 기반 빔-포밍 수신기)

  • Jung, Won-jae;Hong, Nam-pyo;Jang, Jong-eun;Chae, Hyung-il;Park, Jun-seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1566-1573
    • /
    • 2016
  • This paper presents a beam-forming receiver with polyphase In-phase/Quadrature-phase (I/Q) network for airborne communication. In beam-forming receiver, the insertion loss (IL) difference between input path increases the receiver noise figure (NF). The major element for generating IL difference is the impedance variation of phase shifter. In order to maintain a constant IL in every phase, this paper propose a lossless polyphase I/Q network based beam-forming receiver. The proposed lossless polyphase I/Q network has low Q-factor and high impedance for drive back-end VGA (Variable gain amplifier) block with low insertion loss. The 2-stage VGA controls in-phase and quadrature-phase amplitude level for vector summation. The proposed beam-forming receiver prototype is fabricated in TSMC $0.18{\mu}m$ CMOS process. The prototype cover the $360^{\circ}$ with $5.6^{\circ}$ LSB. The average RMS phase error and amplitude error is approximately $1.6^{\circ}$ and 0.3dB.

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

Defect ratio evaluation of the rock bolt grouting using the reflection method of guided ultrasonic waves (유도초음파의 반사법을 이용한 록볼트 그라우팅의 결함비율 평가)

  • Yu, Jung-Doung;Bae, Myeong-Ho;Han, Shin-In;Lee, In-Mo;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.221-232
    • /
    • 2008
  • Rock bolts have been installed into rockmass as a main support system. In order to evaluate the rock bolt integrity using non-destructive technique, the transmission method of the guided ultrasonic wave has been successfully performed. For the transmission method, however, the source for the generation o# guided ultrasonic waves should be installed at the end of the steel bar during construction of the rock bolt in the field. The purpose of this study is to suggest a reflection method that the source and the receiver are installed on the head of the steel bar. The reflection method is compared with the transmission method using non-embedded rock bolts and rock bolts embedded in concrete block. In this experiment, the piezo disc element is used as the source and the AE sensor is used as the receiver. The wavelet transform is applied to determine the energy velocity. The experimental studies show that the reflection method produces almost identical value of the transmission method, and the energy velocity increases with the defect ratio. This study suggests that the reflection method of the guided ultrasonic wave may be a suitable method fur the rock bolt integrity evaluation in the field.

  • PDF

Neoproterozoic A-type Volcanic Activity within the Okcheon Metamorphic Belt (옥천변성대 충주지역의 신원생대 A-형 화산활동)

  • Koh Sang-Mo;Kim Jong-Hwan;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.157-168
    • /
    • 2005
  • Trachytic rocks among the bimodal metavolcanic rocks of the Gyemyeongsan Formation and adjacent areas are investigated. Some rocks reveal very high content of iron and most rocks show very high abundances of rare earth elements and high field strength elements. Most rocks show significant Eu negative anomaly, which can be interpreted as the result of plagioclase fractionation. Lack of noticeable Nb negative anomaly indicates not-involvement of crustal material in their generation, which excludes the arc environment or remelting of continental crust from their genetic process. Metatrachytes of the Gymyeongsan Formation are plotted within the within-plate environment of the tectonic discrimination diagram utilizing immobile high field strength element Nb and Y. They also show typical characteristics of A-type magma, such as high Ga content. Considering their affinity to Al-type of Eby (1992) and their age of 750 Ma (Lee et al., 1998), they seem to have been produced by the differentiation of mantle-derived within-plate magmatism at the rift, related with the separation of Neoproterozoic supercontinent Rodinia. Possible connection of Gyemyeongsan and Munjuri Formations of the Okcheon metamorphic belt, at least part of them, to the Cathaysia block of South China during the Neoproterozoic is strongly suggested.

Implementation of Readout IC for $8\times8$ UV-FPA Detector ($8\times8$ UV-PPA 검출기용 Readout IC의 설계 및 제작)

  • Kim, Tae-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.503-510
    • /
    • 2006
  • Readout circuit is to convert signal occurred in a defector into suitable signal for image signal processing. In general, it has to possess functions of impedance matching with perception element, amplification, noise reduction and cell selection. It also should satisfies conditions of low-power, low-noise, linearity, uniformity, dynamic range, excellent frequency-response characteristic, and so on. The technical issues in developing image processing equipment for focal plane way (FPA) can be categorized as follow: First, ultraviolet (UV) my detector material and fine processing technology. Second, ReadOut IC (ROIC) design technology to process electric signal from detector. Last, package technology for hybrid bonding between detector and ROIC. ROIC enables intelligence and multi-function of image equipment. It is a core component for high value added commercialization ultimately. Especially, in development of high-resolution image equipment ROIC, it is necessary that high-integrated and low-power circuit design technology satisfied with design specifications such as detector characteristic, signal dynamic range, readout rate, noise characteristic, ceil pitch, power consumption and so on. In this paper, we implemented a $8\times8$ FPA prototype ROIC for reduction of period and cost. We tested unit block and overall functions of designed $8\times8$ FPA ROIC. Also, we manufactured ROIC control and image boards, and then were able to verify operation of ROIC by confirming detected image from PC's monitor through UART(Universal Asynchronous Receiver Transmitter) communication.