• Title/Summary/Keyword: element

Search Result 37,562, Processing Time 0.054 seconds

The Use of Hermite Cubic Element for Inviscid Convective Equations (비점성 대류 방정식의 계산을 위한 Hermite 3차 요소의 사용에 대한)

  • 김진환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1993
  • The use of Hermite cubic element, as a possible finite element computation of transport equations containing shocks, has been invesigated. In the present paper the hermite cubic elements are applied to both linear and nonlinear scalar one and two dimensional equations. In the one dimensional problems, numerical results by the hermite cubic element show better than those by the linear element, and the steady state solution by the hermite cubic element yields result with good resolution. This fact proves the superiority of the hermite cubic element in space differencing. In two dimensional case, the results by the hermite cubic element shows a boundary instability, and the use of higher order time differencing method may be necessary for fixing the problem.

  • PDF

Variable-node axisymmetric solid element and its application to adaptive mesh refinement

  • Choi, Chang-Koon;Lee, Eun-Jin;Lee, Wan-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.443-460
    • /
    • 2001
  • This paper presents an effective application of a variable-node axisymmetric solid element designated as AQV (Axisymmetric Quadrilateral Variable-node element). The variable-node element with physical midside nodes helps to overcome some problems in connecting the different layer patterns on a quadrilateral mesh in the adaptive h-refinement. This element alleviates the necessity of imposing displacement constraints on irregular (hanging) nodes in order to enforce the inter-element compatibility. Therefore, the elements with variable mid-side nodes can be used effectively in the local mesh refinement for the axisymmetric structures which have stress concentrations. A modified Gaussian quadrature should be adopted to evaluate the stiffness matrices of the variable-node elements mainly because of the slope discontinuity of assumed displacement within the elements. Some numerical examples show the usefulness of variable-node axisymmetric elements in the practical application.

A high precision shear deformable element for free vibration of thick/thin composite trapezoidal plates

  • Haldar, S.;Manna, M.C.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.213-229
    • /
    • 2003
  • A high precision shear deformable triangular element has been proposed for free vibration analysis of composite trapezoidal plates. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has fifty-five degrees of freedom, which has been reduced to forty-eight by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different side ratios (b/a), boundary conditions, thickness ratios (h/a=0.01, 0.1 and 0.2), number of layers and fibre angle orientations have been analyzed by the proposed shear locking free element. Trapezoidal laminate with concentrated mass at the centre has also been analyzed. An efficient mass lumping scheme has been recommended, where the effect of rotary inertia has been included. For validation of the present element and formulation few results of isotropic trapezoidal plate and square composite laminate have been compared with those obtained from open literatures. The numerical results for composite trapezoidal laminate have been given as new results.

Generalized Inverses and Solutions to Equations in Rings with Involution

  • Yue Sui;Junchao Wei
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, we focus on partial isometry elements and strongly EP elements on a ring. We construct characterizing equations such that an element which is both group invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when these equations have a solution in a given set. In particular, an element a ∈ R# ∩ R is a partial isometry element if and only if the equation x = x(a)*a has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. An element a ∈ R#∩R is a strongly EP element if and only if the equation (a)*xa = xaa has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. These characterizations extend many well-known results.

FORMULATION OF SHELL RINITE ELEMENTS BASED ON A NEW METHOD OF ELEMENT DECOMPISITION (새로운 요소분해방법에 의한 쉘 유한요소의 개발)

  • 이재영
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-78
    • /
    • 1988
  • A new method of element decomposition is suggested for simple, efficient, and generalized formulation of shell finite elements. The kernel of the method is to decompose conceptually the actual element into a translational element and a difference element. The actual element is obtained by combining the two component elements. The derived element can be classified into three basic types depending on how the element is decomposed. A few complementary measures, to remove locking phenomena and thus improve the performance of the elements, have been studied. They are reduced integration, addition of internal degrees of freedom, and mixed formulation. A rational method of controlling spurious zero energy modes has also been devised. Validity and efficiency of the element with or without complementary measures have been examined through a series of numerical studies.

  • PDF

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

Static Analysis of Two Dimensional Curbed Beam Structure by Finite Element-Transfer Stiffness Coefficent Method (유한요소-전달강성계수법에 의한 2차원 곡선 보 구조물의 정적해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2017
  • The objective of this study is the finite element-transfer stiffness coefficient method, which is the combination of the modeling technique of finite element method and the transfer technique of transfer stiffness coefficient method, is applied in the static analyses of two dimensional curved beam structures. To confirm the effectiveness of the applied method, two computational models are selected and analyzed by using finite element method, finite element-transfer stiffness coefficient method and exact solution. The computational results of the static analyses for two computational models using finite element-transfer stiffness coefficient method are equal to those using finite element method. When the element partition number of curved beam structure is increased, the computational results of the static analyses using both methods approach the exact solution. We confirmed that the finite element-transfer stiffness coefficient method is superior to finite element method when the number of the curved beam elements is increased from the viewpoints of the computational speed and the utility of computer memory.

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

The Prediction Modelling on the Stress Intensity Factor of Two Dimensional Elastic Crack Emanating from the Hole Using Neural Network and Boundary element Method (신경회로망과 경계요소법을 이용한 원공에서 파생하는 2차원 탄성균열의 응력세기계수 예측 모델링)

  • Yun, In-Sik;Yi, Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.353-361
    • /
    • 2001
  • Recently the boundary element method has been developed swiftly. The boundary element method is an efficient and accurate means for analysis of two dimensional elastic crack problems. This paper is concerned with the evaluation and the prediction of the stress intensity factor(SIF) for the crack emanating from the circular hole using boundary element method-neural network. The SIF of the crack emanating from the hole was calculated by using boundary element method. Neural network is used to evaluate and to predict SIF from the results of boundary element method. The organized neural network system (structure of four processing element) was learned with the accuracy 99%. The learned neural network system could be evaluated and predicted with the accuracy of 83.3% and 71.4% (in cases of SIF and virtual SIF). Thus the proposed boundary element method-neural network is very useful to estimate the SIF.

An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells

  • Han, S.C.;Kim, K.D.;Kanok-Nukulchai, W.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.807-829
    • /
    • 2004
  • The Element-Based Lagrangian Formulation of a 9-node resultant-stress shell element is presented for the isotropic and anisotropic composite material. The effect of the coupling term between the bending strain and displacement has been investigated in the warping problem. The strains, stresses and constitutive equations based on the natural co-ordinate have been used throughout the Element-Based Lagrangian Formulation of the present shell element which offers an advantage of easy implementation compared with the traditional Lagrangian Formulation. The element is free of both membrane and shear locking behavior by using the assumed natural strain method such that the element performs very well in thin shell problems. In composite plates and shells, the transverse shear stiffness is defined by an equilibrium approach instead of using the shear correction factor. The arc-length control method is used to trace complex equilibrium paths in thin shell applications. Several numerical analyses are presented and discussed in order to investigate the capabilities of the present shell element. The results showed very good agreement compared with well-established formulations in the literature.