• Title/Summary/Keyword: electrostatic separation

Search Result 68, Processing Time 0.027 seconds

Spectrophotometric Analysis of Behavior to Tyrosine Residue in the Yellow Fluorescent Cocoon of Bombyx mori (황색 형광견 중 Tyrosine잔기 거동의 분광학적 분석)

  • Yeo, Ju-Hong;Lee, In-Jeon
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.169-173
    • /
    • 1997
  • The behavior of tyrosine(Tyr.) residue of Bombyx mori silk fiber from yellow fluorescent cocoon has been examined for the dependence of pH in aqueous silk solution under the presence of orange II salt. Through the peak separation of angular dependence of spectral pattern of 15N-Tyr. and [1-13C]-Tyr. between the fiber axis and the molecular bond direction, N-H bond in fiber as well as the orientation distribution around the fiber axis were analyzed. Also, and sericin component was obtained from these angular dependence of oriented spectral pattern. The pH dependence of the 13C NMR chemical shift of B. mori silk fibroin was examined in aqueous solution in the presince of orange II are broad at pH$\geq$7.0. However, these become sharper at pH$\geq$8.0 and remain sharp at higher pH. In these higher pH range, a chemical shift change occurs due to the deprotonation of the Tyr. side group of fibroin. At higher pH. such a hydrophobic cluster is destroyed because of the electrostatic interaction according to the deprotonation of the Tyr-OH group.

  • PDF

Chromatographic Behavior of Proteins on Stationary Phase with Aminocarboxy Ligand

  • Li, Rong;Ju, Ming-Yang;Chen, Bin;Sun, Qing-Yuan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.590-594
    • /
    • 2011
  • An aminocarboxy aspartic acid-bonded silica (Asp-Silica) stationary phase was synthesized using L-aspartic acid as ligand and silica gel as matrix. The standard protein mixtures were separated with prepared chromatographic column. The effects of solution pH, salt concentration and metal ion on the retention of proteins were examined, and also compared with traditional iminodiacetic acid-bonded silica (IDA-Silica) column. The results show that Asp-Silica column exhibited an excellent separation performance for proteins. The retention of proteins on Asp-Silica stationary phase was consistent with electrostatic characteristic of cation-exchange. The stationary phase displayed typical metal chelate property after fixing copper ion (II) on Asp-Silica. Under competitive eluting condition, protein mixtures were effectively isolated. Asp ligand showed better ion-exchange and metal chelating properties as compared with IDA ligand.

Electromigration in Molten-phase Ge2Sb2Te5 and Effects of Doping on Atomic Migration Rate

  • Joo, Young-Chang;Yang, Tae-Youl;Cho, Ju-Young;Park, Yong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.43-47
    • /
    • 2012
  • Electromigration in molten $Ge_2Sb_2Te_5$ (GST) was characterized using pulsed DC stress to an isolated line structure. When an electrical pulse was applied to the GST, GST lines were melted by Joule heating, and Ge and Sb atoms migrate to the cathode, whereas Te atoms migrate to the anode. This elemental separation in the molten GST was caused by an electrostatic force-induced electromigration. The effects of O-, N-, and Bi-doping on the electromigration were also investigated, and atomic mobility changes by the doping were investigated by quantifying $DZ^*$ values. The Bi -doping did not affect the $DZ^*$ values of the constituent atoms in the molten GST, but the D$DZ^*$ values decreased by O-doping and N-doping.

An Experimental Study on the Characteristics of Direct Photoelectric Charging (직접 광대전의 대전특성에 관한 실험적 연구)

  • Lee, Chang-Sun;Kim, Yong-Jin;Kim, Sang-Sao
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.753-759
    • /
    • 2000
  • Photoelectric charging is a very efficient way of charging small particles. This method can be applied to combustion measurement, electrostatic precipitator, metal separation and control of micro-contamination. To understand the photoelectric charging mechanism, particle charging of silver by exposure to ultraviolet is investigated in this study. Average charges and charge distributions are measured at various conditions, using two differential mobility analyzers, a condensation nucleus counter, and an aerosol electrometer. The silver particles are generated in a spark discharge aerosol generator. After that process, the generated particles are charged in the photoelectric charger using low-pressure mercury lamp that emits ultraviolet having wavelength 253.7 nm. The results show that ultra-fine particles are highly charged by the photoelectric charging. The average charges linearly increase with increasing particle size and the charge distribution change with particle size. These results are discussed by comparison with previous experiments and proposed equations. It is assumed that the coefficient of electron emission probability is affected by initial charge. The results also show that the charge distribution of a particle is dependent on initial charge. Single changed particle, uncharged particle and neutralized particle are compared. The differences of charge distribution in each case increase with increasing particle size.

Incompatibility of Casein-Alginate Mixtures (카제인-알긴산 혼합물의 비혼합성)

  • Choi, Moon-Jung;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1035-1039
    • /
    • 1998
  • Phase separation is the typical phenomenon in protein-polysaccharide mixtures because of thermodynamic incompatibility between two macromolecules. Phase separations of casein-alginate-water systems were investigated by using phase diagram under varying pH (6, 8 and 10) and NaCl concentrations (0, 0.25 and 0.5 M). Incompatibility decreased with increasing pH and decreasing NaCl concentration. Molecular weight of alginates did not significantly affect the phase diagram of casein-alginate-water systems. The results strongly suggested that compatibility of casein and alginate involved electrostatic interactions.

  • PDF

Synthesis of Microaglae-Capturing Magnetic Microcapsule Using CaCO3 Microparticles and Layer-by-Layer Coating

  • Lee, Young-Hee;Seo, Jung-Cheol;Oh, You-Kwan;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.376-380
    • /
    • 2018
  • Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on $Fe_3O_4$ nanoparticle-embedded $CaCO_3$ microparticles followed by removing $CaCO_3$ sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.

Separation of High Purity and High Carbon Fly Ash by Electrostatic Method (정전선별법에 의한 고순도 석탄회와 고탄소 석탄회의 분리)

  • 한오형;깅현호
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2003
  • In 2001, Korea produced a total of 4.91 million metric tons of fly ash, approximately 63.3% of which was recycled. Almost all of the recycled fly ash are used in concrete mixtures and cement industry. Therefore, in order to develop a new usage to increase the utilization of the fly ash, conductive induction was used in this research rather than triboelectrostatic. By applying conductive induction, we could verify the possibility of obtaining high purity fly ash below 1%LOI and high carbon fly ash over 70%LOI from raw fly ash. In this test, the potential difference between the two electrodes was conducted by changing the range of 8 to 16 kV.

Development of Heterojunction Electric Shock Protector Device by Co-firing (동시소성형 감전소자의 개발)

  • Lee, Jung-soo;Oh, Sung-yeop;Ryu, Jae-su;Yoo, Jun-seo
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.106-115
    • /
    • 2019
  • Recently, metal cases are widely used in smart phones for their luxurious color and texture. However, when a metal case is used, electric shock may occur during charging. Chip capacitors of various values are used to prevent the electric shock. However, chip capacitors are vulnerable to electrostatic discharge(ESD) generated by the human body, which often causes insulation breakdown during use. This breakdown can be eliminated with a high-voltage chip varistor over 340V, but when the varistor voltage is high, the capacitance is limited to about 2pF. If a chip capacitor with a high dielectric constant and a chip varistor with a high voltage can be combined, it is possible to obtain a new device capable of coping with electric shock and ESD with various capacitive values. Usually, varistors and capacitors differ in composition, which causes different shrinkage during co-firing, and therefore camber, internal crack, delamination and separation may occur after sintering. In addition, varistor characteristics may not be realized due to the diffusion of unwanted elements into the varistor during firing. Various elements are added to control shrinkage. In addition, a buffer layer is inserted in the middle of the varistor-capacitor junction to prevent diffusion during firing, thereby developing a co-fired product with desirable characteristics.

A Study on the Solution of Product Particle Attachment Problem using Practical TRIZ (실용 트리즈를 활용한 제품 Particle 부착 문제의 해결 방안 연구)

  • Kyu-Han Jeong;In-Kwang Song;Jang-Hee Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.209-221
    • /
    • 2023
  • In the external inspection and packaging stages of products used in the semiconductor manufacturing process, there is a problem in which particles are adsorbed to the product itself or a carrying tool due to electrostatic discharge. This study presents a methodology that can improve the problem of adsorption of particles to a product by using a practical TRIZ technique. By applying the proposed practical TRIZ-based methodology, the problem was defined, and contradictions caused by product waiting time were derived. Among the derived contradictions, physical contradictions were set and the concept of 'space separation' was applied to derive solutions such as 'installation of Ionizer' and 'improvement of the layout of the workroom'. As a result of the experiment by applying 'Ionizer Installation' and 'Workroom Layout Improvement' derived through the application of practical TRIZ, it was confirmed that the particle adsorption problem that occurs during the waiting time of the product can be solved.Through this study, it is expected that workers, facility engineers, and technical engineers working at manufacturing processes will be able to effectively solve the problems they face through creative thinking and change of ideas by using practical TRIZ techniques, and contribute to innovative technology development and productivity improvement.

Group Separation of Water-soluble Organic Carbon Fractions in Ash Samples from a Coal Combustion Boiler

  • Park, Seung-Shik;Jeong, Jae-Uk;Cho, Sung-Yong
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.67-72
    • /
    • 2012
  • The chemical characterization of water-soluble organic carbon in ash emitted from a coal combustion boiler has not been reported yet. A total of 5 ash samples were collected from the outlet of an electrostatic precipitator in a commercial 500 MW coal-fired power plant, with their chemical characteristics investigated. XAD7HP resin was used to quantify the hydrophilic and hydrophobic water-soluble organic carbons (WSOC), which are the fractions of WSOC that penetrate and remain on the resin column, respectively. Calibration results indicate that the hydrophilic fraction includes aliphatic dicarboxylic acids and carbonyls (<4 carbons), amines and saccharides, while the hydrophobic fraction includes aliphatic dicarboxylic acids (>4-5 carbons), phenols, aromatic acids, cyclic acid and humic acid. The average mass of the WSOC in the ash samples was found to depend on the bituminous coal type being burned, and ranged from 163 to 259 ${\mu}g$ C/g of ash, which corresponds to 59-96 mg C of WSOC/kg of coal combusted. The WSOC mass accounted for 0.02-0.03 wt% of the used ash sample mass. Based on the flow rate of flue gas produced from the combustion of the blended coals in the 500 MW coal combustion boiler, it was estimated that the WSOC particles were emitted to the atmosphere at flow rates of 4.6-7.2 g C/hr. The results also indicated that the hydrophilic WSOC fraction in the coal burned accounted for 64-82% of the total WSOC, which was 2-4 times greater than the mass of the hydrophobic WSOC fraction.