• Title/Summary/Keyword: electrostatic precipitator

Search Result 198, Processing Time 0.023 seconds

Effect of Coagulants on the Behavior of Ultra Fine Dust in a Coal Firing Boiler (석탄 화력 보일러에서의 응집제 이용에 따른 초미세먼지 거동)

  • Ryu, Hwanwoo;Song, Byungho
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.84-89
    • /
    • 2020
  • Particulate matters of PM2.5, particularly focusing on 0.1~1 ㎛ decrease the efficiency of dust-collector due to the brownian-motion. This study is to verify the effect of coagulant on the particle size distributions of potassium and PM2.5. The activated coagulant was spayed to the coal fired fluidized bed combustion boiler by the weight ratio of 1,200 : 1 = coal : coagulant, and the size distributions of captured particles at both the cyclone (FP) and electrostatic precipitator (EP) were measured. As the result of XRP analysis, the potassium content of FP increased to 13.33% (averagely from 1.65% to 1.87%) and, in EP at 17.68% (averagely from 1.65% to 2.03%). And it was confirmed by the particle size distribution analyzer and SEM image analysis that the distribution rates of PM2.5 decreased at 89.53% on average in FP, and at 88.57% in EP. The total dust concentration (mg/㎥) confirmed by tele-monitering system (TMS) decreased during the primary test from 2.6 to 1.7~1.9 and also the secondary test from 2.9 to 1.7~1.9.

Concentration and Properties of Particulate Matters (PM10 and PM2.5) in the Seoul Metropolitan (서울시 지하철 시스템 내의 입자상물질(PM10, PM2.5) 농도 특성)

  • Lee, Tae-Jung;Lim, Hyoji;Kim, Shin-Do;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2015
  • Seoul subway plays an important part for the public transportation service in Seoul metropolitan area. As the subway system is typically a closed environment, frequent air pollution problems occurred and passengers get malhealth impact. Especially particulate matters (PM) is well known as one of the major pollutants in subway environments. The purpose of this study was to compare the concentrations of $PM_{10}$ and $PM_{2.5}$ in the Seoul subway system and to provide fundamental data in order to management of subway system. $PM_{10}$ and $PM_{2.5}$ samples were collected in the M station platform and tunnel of Subway Line 4 in Seoul metropolitan and in an outdoor location close to it from Apr. 21, 2010~Oct. 27, 2013. The samples collected on teflon filters using $PM_{10}$ and $PM_{2.5}$ mini-volume portable samplers and PM sequential sampler. The PM contributions were $48.6{\mu}g/m^3$ (outdoor), $84.6{\mu}g/m^3$ (platform) and $204.8{\mu}g/m^3$ (tunnel) for $PM_{10}$, and $34.6{\mu}g/m^3$ (outdoor), $49.7{\mu}g/m^3$ (platform) and $83.1{\mu}g/m^3$ (tunnel) for $PM_{2.5}$. The $PM_{10}$ levels inside stations and outdoors are poorly correlated, indicating that $PM_{10}$ levels in the metro system are mainly influenced by internal sources. In this study, we compared PM concentrations before and after operation of ventilation and Electrostatic Precipitator (EP). Despite the increased PM concentration at outdoor, $PM_{10}$ concentration at platform and tunnel showed the 31.2% and 32.3% reduction efficiency after operation the reduction system. The overall results of this study suggest that the installation and operation of the ventilating system and EP should have served as one of the important components for maintaining the air quality in the subway system.

Physical, Morphological, and Chemical Analysis of Fly Ash Generated from the Coal Fired Power Plant (석탄 화력발전소에서 발생되는 석탄회 특성과 형성 분석에 관한 연구)

  • 이정언;이재근
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.146-156
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A physical, morphological, and chemical characteristic of fly ash has been analyzed. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, ash recycling and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution and gravimeter. Morphological characteristic of fly ash is performed using a scanning electron micrograph and an optical microscope. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry (ICP). The distribution of fly ash size was ranged from 15 to 25 $\mu$m in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, relative opacity, coloration, cenosphere and plerosphere. The spherical fly ash might be generated at the condition of complete combustion. The size of fly ash was found to be increased the with particle-particle interaction of agglomeration and coagulation. Fly ash consisted of $SiO_2\;Al_2O_3\;and\;Fe_2O_3$ with 85% and carbon with 3~10% of total mass.

  • PDF

A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System (FGR 시스템 동력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, Myung-whan;Jung, Kwong-ho;Park, Sung-bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.263-273
    • /
    • 2016
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_x$ emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and $NO_x$ emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

Study of Smoking Booth Design for the Treatment of Hazardous Pollutants (유해오염물질 처리를 위한 흡연부스의 설계)

  • Kwon, Woo-Taeg;Kwon, Lee-Seung;Lee, Woo-Sik
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.107-111
    • /
    • 2017
  • The purpose of this study was to develop a Eco smoking booth that can effectively reduce hazardous pollutants generated during smoking and evaluate the efficiency and effectiveness of removing hazardous pollutants. The design and manufacture of an eco-friendly automatic smoking booth equipped with deodorizing facilities, such as inlet - HEPA filter - electrostatic precipitator (EP) - impregnated activated carbon - exhaust port, etc., and the efficiency of removing hazardous pollutants from inside and outside was measured and evaluated. The complex odor removal efficiency was 95.37% inside the smoking booth, and 97.38% at the exit of the preventive facility. The carbon monoxide removal efficiency was 94.25% in the inside and 98.32% in the outlet. In addition, the removal efficiency of particulate matter, (PM1, PM2.5, and PM10) inside the smoking booth was 98.59%, and 98.85% at the outlet. The total volatile organic compounds (TVOCs) decreased from $26,000{\mu}g/m^3$ to $5,203{\mu}g/m^3$ in the smoking booth, resulting in 79.99% removal efficiency. After the ventilator was operated, the measured effluent concentration was $5,019{\mu}g/m^3$, and the removal efficiency was 80.70%. Therefore, the smoking booth designed and manufactured through this study can be applied to the removal of harmful pollutants even in the small working environment in the future.

Size measurement of electrosprayed droplets using shadowgraph visualization method (Shadowgraph 가시화 기법을 활용한 정전분무액적의 크기 측정)

  • Oh, Min-Jeong;Kim, Sung-Hyun;Lee, Myong-Hwa
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.151-158
    • /
    • 2017
  • Electrostatic precipitator is widely used to remove particulate matters in indoor air and industrial flue gas due to low pressure drop and high collection efficiency. However, it has a low collection efficiency for the submicrometer sized particles. Electrospraying is a potential method to increase the particle charging efficiency, which results in increased collection efficiency. Although particle charging efficiency is highly dependent upon droplet size, the effective measuring method of the droplets is still uncertain. Tap water was electrosprayed in this study, and the images of electrosprayed droplets were taken with a high speed camera coupled with several visualization methods in order to measure the droplets size. The droplet size distribution was determined by an image processing with an image-J program. As a result, a droplet measured by a laser visualization, had a half size of that by a Xenon light visualization. In addition, the experimentally measured droplet sizes were a good agreement with the predicted values suggested by $Fern{\acute{a}}ndez$ de la Mora and Loscertales(1994).

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

Dust Removal Efficiency and Operation Characteristics of Metal Filters for Coal Gasification Fines and Standard Dust Sample (금속필터를 사용한 석탄가스화 분진 및 표준 분진의 집진 효율과 운전특성)

  • Yun, Yongseung;Chung, Seok Woo;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.461-468
    • /
    • 2019
  • Demand for improving dust removal efficiency in coal power plants and the dust removal requirement to the level of capturing fine particulate matter and ultrafine particles have been increasing. While bag filter and electrostatic precipitator (ESP) are typically used for dust removal in the processes operating at atmospheric pressure, metal filters or ceramic filters are employed for dust which is produced at high temperature/pressure system as in coal gasification. For dust removal at the high temperature/pressure conditions, two metal filters of five compressed/sintered layers were manufactured and applied to analyze the dust removal characteristics. Manufactured metal filters exhibited more than 99% dust removal efficiency on coal gasification fine particulates in mass basis. To evaluate the fine particulate removal efficiency of less than $2.5{\mu}m$, JIS standard fine sample was used and confirmed the removal efficiencies of 97% and 70~82% on the fine particulates of $1{\sim}2.5{\mu}m$ size range. For the size range of less than $1{\mu}m$, dust removal efficiency of manufactured metal filters significantly degraded with smaller particle size. Improving methods are proposed to overcome the limitations in applying to fine dust of less than $1{\mu}m$.