• Title/Summary/Keyword: electrospray ionization

Search Result 317, Processing Time 0.025 seconds

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin;Kim, Jisu;Choi, Inseong;Lee, Jeongwook;Yeo, Woon-Seok
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.349-356
    • /
    • 2020
  • Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

Hydrolysis of Penicillin G and Carbenicillin in Pure Water - As Studied by HPLC/ESI-MS

  • Kolek, Marta;Franski, Rafal;Franska, Magdalena
    • Mass Spectrometry Letters
    • /
    • v.10 no.4
    • /
    • pp.108-111
    • /
    • 2019
  • The hydrolysis of penicillin G, carbenicillin and ampicillin in pure water at room temperature was studied by high pressure liquid chromatography electrospray ionization mass spectrometry. Hydrolysis of ampicillin did not occur under these conditions; however, penicillin G and carbenicillin were completely hydrolyzed after seven days. A short interpretation of this difference is proposed. The mass spectrometric behaviour, namely ESI response and fragmentation pathway, of hydrolyzed penicillin G and hydrolyzed carbenicillin have been also discussed.

Quantitative Analysis of the Marker Constituents in Yongdamsagan-Tang using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-MS/MS를 이용한 용담사간탕의 주요 성분 분석)

  • Seo, Chang-Seob;Ha, Hyekyung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.320-328
    • /
    • 2017
  • Yongdamsagan-tang has been used to treat the urinary disorders, acute- and chronic-urethritis, and cystitis in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous analysis of the 20 bioactive marker compounds, geniposidic acid, chlorogenic acid, geniposide, liquiritin apioside, acteoside, calceolarioside B, liquiritin, nodakenin, baicalin, liquiritigenin, wogonoside, baicalein, glycyrrhizin, wogonin, glycyrrhizin, wogonin, saikosaponin A, decursin, decursinol angelate, alisol B, alisol B acetate, and pachymic acid in traditional herbal formula, Yongdamsagan-tang. Chromatographic separations of all marker compounds were conducted using a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization source in the positive and negative modes. The flow rate was 0.3 mL/min and injection volume was $2.0{\mu}L$. The correlation coefficient of 20 marker compounds in the test ranges was 0.9943-1.0000. The limits of detection and quantification values of the all marker components were 0.11-6.66 and 0.34-19.99 ng/mL, respectively. As a result of the analysis using the optimized LC-ESI-MS/MS method, three compounds, geniposidic acid (from Plantaginis Semen), alisol B (from Alismatis Rhizoma), and pachymic acid (from Poria Sclerotium), were not detected in this sample. While the amounts of the 17 compounds except for the geniposidic acid, alisol B, and pachymic acid were $0.04-548.13{\mu}g/g$ in Yongdamsagan-tang sample. Among these compounds, baicalin, bioactive marker compound of Scutellariae Radix, was detected at the highest amount as a $548.13{\mu}g/g$.

Quantification of the 25 Components in Onkyung-Tang by Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS를 이용한 온경탕 중 25종 성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.92-101
    • /
    • 2016
  • In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS/MS) method was established for simultaneous determination of the 25 marker components, including chlorogenic acid, gallic acid, oxypaeoniflorin, homogentisic acid, methyl gallate, caffeic acid, 3,4-dihydroxybenzaldehyde, paeoniflorin, albiflorin, liquiritin, nodakenin, ferulic acid, ginsenoside Rg1, liquiritigenin, coumarin, cinnamic acid, benzoylpaeoniflorin, ginsenoside Rb1, cinnamaldehyde, paeonol, glycyrrhizin, 6-gingerol, evodiamine, rutecarpine, and spicatoside A in traditional Korean formula, Onkyung-tang. All analytes were separated on a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}m$) at $45^{\circ}C$ using a mobile phase of 0.1% (v/v) formic acid in water and acetonitrile with gradient elution. The MS analysis was carried out using a Waters ACQUITY TQD LC-MS/MS coupled with an electrospray ionization (ESI) source in the positive and negative modes. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$, respectively. The correlation coefficient of all analytes in the test ranges was greater than 0.98. The limits of detection and quantification values of the 25 marker compounds were in the ranges 0.03-19.43 and 0.09-58.29 ng/mL, respectively. As a result, methyl gallate, 3,4-dihydroxybenzaldehyde, evodiamine, and rutecarpine were not detected in this sample and the concentrations of the 21 compounds except for the above 4 compounds were $33.09-3,496.32{\mu}g/g$ in Onkyung-tang decoction. Among these compounds, paeonol was detected at the highest amount as a $3,496.32{\mu}g/g$.

Study of Complexes of C2- and C6-dihydroceramides with Transition Metal Ions Using Electrospray Ionization Tandem Mass Spectrometry (ESI-MS/MS)

  • Lim, Jin-Yi;Kumar, Avvaru Praveen;Kim, Chang-Dae;Ahn, Chul-Jin;Yoo, Young-Jae;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.397-401
    • /
    • 2009
  • The complexes of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have been investigated by using Electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The formation and fragmentation pathways of several doubly charged cluster ions as well as singly charged cluster ions of $C_2-\;and\;C_6$-dihydroceramides with transition metal ions have studied by ESI-MS/MS in the positive mode. Under ESI conditions, dihydroceramides form singly and doubly charged complexes with transition metal ions $(Mn^{2+},\;Fe^{2+},\;Co^{2+},\;Ni^{2+},\;and\;Zn^{2+}\;except\;Cu^{2+})$ with the compositions of $[DHCer+M+2H^2O-H]^+,\;[2DHCer+M+2H2O-H]^+,\;[3DHCer+M+2H2O-H]^+,\;[2DHCer+M]^{2+},\;[3DHCer+M]^{2+},\;[4DHCer+M]^{2+},\;[5DHCer+M]^{2+},\;and\;[6DHCer+M]^{2+}\;(DHCer\;=\;C_2-\;or\;C_6$-dihydroceramide, M = transition metal ion). The different complexation behavior of copper is responsible for relatively lower affinity of dihydroceramides to copper compared to those of other transition metals. It is also found that in the mass spectrum of the dihydroceramide complexes with copper(II), [2DHCer+Cu-H]$^+$ was observed with considerable intensity as well as [2DHCer+Cu+2$H_2O-H]^+$ due to its different geometry from those of other metals.

Comparison of Lipid Profiles in Head and Brain Samples of Drosophila Melanogaster Using Electrospray Ionization Mass Spectrometry (ESI-MS)

  • Jang, Hyun Jun;Park, Jeong Hyang;Lee, Ga Seul;Lee, Sung Bae;Moon, Jeong Hee;Choi, Joon Sig;Lee, Tae Geol;Yoon, Sohee
    • Mass Spectrometry Letters
    • /
    • v.10 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Drosophila melanogaster (fruits fly) is a representative model system widely used in biological studies because its brain function and basic cellular processes are similar to human beings. The whole head of the fly is often used to obtain the key function in brain-related diseases like degenerative brain diseases; however the biomolecular distribution of the head may be slightly different from that of a brain. Herein, lipid profiles of the head and dissected brain samples of Drosophila were studied using electrospray ionization-mass spectrometry (ESI-MS). According to the sample types, the detection of phospholipid ions was suppressed by triacylglycerol (TAG), or the specific phospholipid signals that are absent in the mass spectrum were measured. The lipid distribution was found to be different in the wild-type and the microRNA-14 deficiency model ($miR-14{\Delta}^1$) with abnormal lipid metabolism. A few phospholipids were also profiled by comparison of the head and the brain in two fly model systems. The mass spectra showed that the phospholipid distributions in the $miR-14{\Delta}^1$ model and the wild-type were different, and principal component analysis revealed a correlation between some phospholipids (phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS)) in $miR-14{\Delta}^1$. The overall results suggested that brain-related lipids should be profiled using fly samples after dissection for more accurate analysis.

Influence of Alkali Metal Cation Type on Ionization Characteristics of Carbohydrates in ESI-MS

  • Choi, Sung-Seen;Kim, Jong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1996-2000
    • /
    • 2009
  • Alkali metal salts were introduced to enhance the ionization efficiency of glucose and maltooligoses in electrospray ionization-mass spectrometry (ESI-MS). A mixture of the same moles of glucose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, and maltoheptaose was used. Salts of lithium, sodium, potassium, and cesium were employed as the cationizing agent. The ionization efficiency varied with the alkali metal cation types as well as the analyte sizes. Ion abundance distribution of the [M+$cation]^+$ ions of the carbohydrates varied with the fragmentor voltage. The maximum ion abundance at low fragmentor voltage was observed at maltose, while the maximum ion abundance at high fragmentor voltage shifted to maltotriose or maltotetraose for Na, K, and Cs. Variation of the ionization efficiency was explained with the hydrated cation size and the binding energy of the analyte and alkali metal cation.

Application of Malononitrile Derivatization Method for Structural Glycomics Study in Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry

  • Ahn, Yeong-Hee;Yoo, Jong-Shin
    • Journal of Photoscience
    • /
    • v.8 no.2
    • /
    • pp.83-86
    • /
    • 2001
  • Structural analyses of oligosaccharide-malononitrile derivatives were conducted by matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) analysis in positive ion mode. The malononitrile derivatives of oligosaccharides, which were developed for highly sensitive detection of multi-component oligosaccharides by negative ion electrospray ionization mass spectrometry (ESI MS), were detected by positive-ion MALDI with the detection limit of 2 pmol level from the crude derivatization sample. The used matrix affected drastically the analytical results of oligosaccharide-malononitrile derivative by matrix-assisted laser desoprtion/ionization mass spectrometry (MALDI MS). The malononitrile derivatization of oligosaccharide also affect the patterns of MALDI-PSD spectra and give much more structural information than the free oligosaccharide.

  • PDF

Quantitative Proteomics Towards Understanding Life and Environment

  • Choi, Jong-Soon;Chung, Keun-Yook;Woo, Sun-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.371-381
    • /
    • 2006
  • New proteomic techniques have been pioneered extensively in recent years, enabling the high-throughput and systematic analyses of cellular proteins in combination with bioinformatic tools. Furthermore, the development of such novel proteomic techniques facilitates the elucidation of the functions of proteins under stress or disease conditions, resulting in the discovery of biomarkers for responses to environmental stimuli. The ultimate objective of proteomics is targeted toward the entire proteome of life, subcellular localization biochemical activities, and the regulation thereof. Comprehensive analysis strategies of proteomics can be classified into three categories: (i) protein separation via 2-dimensional gel electrophoresis (2-DE) or liquid chromatography (LC), (ii) protein identification via either Edman sequencing or mass spectrometry (MS), and (iii) proteome quantitation. Currently, MS-based proteomics techniques have shifted from qualitative proteome analysis via 2-DE or 2D-LC coupled with off-line matrix assisted laser desorption ionization (MALDI) and on-line electrospray ionization (ESI) MS, respectively, toward quantitative proteome analysis. In vitro quantitative proteomic techniques include differential gel electrophoresis with fluorescence dyes. protein-labeling tagging with isotope-coded affinity tags, and peptide-labeling tagging with isobaric tags for relative and absolute quantitation. In addition, stable isotope-labeled amino acids can be in vivo labeled into live culture cells via metabolic incorporation. MS-based proteomics techniques extend to the detection of the phosphopeptide mapping of biologically crucial proteins, which ale associated with post-translational modification. These complementary proteomic techniques contribute to our current understanding of the manner in which life responds to differing environment.