• Title/Summary/Keyword: electrophosphorescent

Search Result 22, Processing Time 0.035 seconds

Organic Electrophosphorescent Device driven by Organic Thin-Film Transistor (유기 TFT로 구동한 유기 인광발광소자의 연구)

  • Kim, Yun-Myoung;Pyo, Sang-Woo;Kim, Jun-Ho;Shim, Jae-Hoon;Zyung, Tae-Hyung;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.312-315
    • /
    • 2001
  • Recently organic electroluminescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decrease rapidly as the luminance increase, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all organic thin film transistor(OTFT). The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)$_3$/BCP/Alq$_3$/Li:Al/Al. In OTFT. polymer is used as an insulator and pentacene as an active layer. Detailed performance of the integrated device will be discussed.

  • PDF

Organic Electrophosphorescent Device driven by Organic Thin-Film Transistor (유기 TFT로 구동한 유기 인광발광소자의 연구)

  • 김윤명;표상우;김준호;심재훈;정태형;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.312-315
    • /
    • 2001
  • Recently organic electroluminescent devices have been intensively investigated for using in full-color flat-panel display. Since the quantum efficiency of electrophosphorescent device decrease rapidly as the luminance increase, it is desirable to operate the electrophosphorescent display with active matrix rather than passive matrix. Here we report the study of driving electrophosphorescent diode with all organic thin film transistor(OTFT). The structure of electrophosphorescent diode is ITO/TPD/BCP:Ir(ppy)$_3$/BCP/Alq$_3$/Li:Al/Al. In OTFT, Polymer is used as an insulator and pentacene as an active layer. Detailed performance of the integrated device will be discussed.

  • PDF

Charge Confinement and Interfacial Engineering of Electrophosphorescent OLED

  • Chin, Byung-Doo;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1203-1205
    • /
    • 2007
  • Confinement of charge carrier and exciton is the essential factor for enhancing the efficiency and stability of the electrophosphorescent devices. The interplay between the properties of emitters and other adjacent layers are studied based on the physical interpretation with difference of energy level, charge carrier mobility, and corresponding charge-trapping behavior.

  • PDF

Highly Efficient Top-Emitting Electrophosphorescent Organic Light-Emitting Devices

  • Lu, Min-Hao M.;Weaver, Michael S.;Zhou, Theodore X.;Rothman, Mark;Kwong, Raymond C.;Hack, Mike;Brown, Julie J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.90-93
    • /
    • 2002
  • We present both a theoretical analysis and experimental data to show that electrophosphorescent top-emitting organic light emitting-devices (TOLEDs) with a reflective anode and a transparent cathode can be more efficient than the equivalent state-of-the-art bottom-emitting electrophosphorescent OLEDs (PHOLEDs$^{TM}$). The lifetime of devices with transparent cathodes are shown to approach that of the corresponding bottom-emitting devices.

  • PDF

Electrophosphorescent organic light-emitting diodes with modified hole blocking layer

  • Shin, Y.C.;Baek, H.I.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1042-1045
    • /
    • 2006
  • The electrical and optical properties of electrophosphorescent organic light-emitting diodes (OLEDs) with modified hole blocking layer (HBL) were investigated. Well-known 2,9-dimethyl-4,7- diphenyl-1,10-phenanthroline (BCP) HBL is mixed with electrophosphorescent host material (4,4'-N,N'- dicarbazole-biphenyl: CBP) or electrophosphorescent dopant material (fac-tris(2-phenylpyridine) iridium: $Ir(ppy)_3$) or both. The highest external quantum efficiency was obtained in the device with $BCP-CBP-Ir(ppy)_3$ mixed HBL and we attribute this result to the additional charge recombination in mixed-HBL.

  • PDF

Energy Transfer and Device Performance in Polymer Based Electrophosphorescent Light Emitting Diodes and Effect of Ligand Modification in the Optical and Electrical Properties of Phosphorescent Dyes (고분자 전기인광소자에서의 에너지 전이, 소자 특성 및 인광염료의 리간드 변화에 따른 광학적, 전기적 특성 변화)

  • Lee Chang-Lyoul;Das R. R.;Noh Young-Yong;Kim Jang-Joo
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.107-121
    • /
    • 2005
  • Electrophosphorescent light emitting diodes (LEDs) using phosphorescent dyes as triplet emitter, which incorporate a heavy metal atom to mix singlet and triplet states by the strong spin-orbit coupling, can achieve the theoretically $100\%$ internal quantum efficiency. In this paper, we report on the performance and the energy transfer mechanism of polymer based highly efficient electrophosphorescent LEDs. The effect of phase separation and aggregation to the energy transfer between polymer hosts and phosphorescent guests and performance of polymer electrophosphorescent LEDs were investigated. Finally, the effect of introducing substitute group and ligand modification of phosphorescent dyes on optical and electrical properties are reported.

Solution-processed electrophosphorescent devices with a thin fluoropolymer at the hole transport interfacial layer

  • Park, Jae-Kyun;Hwang, Gyoung-Seok;Lee, Tae-Woo;Chin, Byung-Doo
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.223-227
    • /
    • 2011
  • Electrophosphorescent devices with ionomer-type hole transport layers were investigated. On top of the 3,4-ethylenedioxy thiophene:poly(4-styrene sulfonate) [PEDOT:PSS] structures, fluoropolymer interfacial layers (FPIs) with different side chain lengths were introduced. Both for the PEDOT:PSS/FPI (layered) and PEDOT:PSS (mixed) structures with soluble phosphorescent emitters, the short-side-chain FPIs showed higher efficiency. The difference in the electrical properties of the two FPIs for bipolar (light-emitting) devices was not clear, but the hole-only device clearly showed the favored hole injection at the PEDOT:PSS/FPI structure with a shorter side chain, a copolymer of tetrafluoroethylene and sulfonyl fluoride vinyl ether.

Study of White Polymer Electrophosphorescent Light-emitting Diode with Heteroleptic Ir-Complex

  • Lee, Jay-Woo;Kim, Eu-Gene
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.648-650
    • /
    • 2007
  • We demonstrate highly efficient White Polymer Electrophosphorescent Light-emitting Diode using newly developed green and red light emitting heteroleptic iridium complex, Ir-(pq)2tpy, and blue light emitting fluorescent dopant, BczVBi. The best luminous efficiency reached 28cd/A with maximum luminance of 87000cd/m2. The scheme for determining optimum device architecture and dopant concentrations were constructed.

  • PDF

Improvement of electroluminescent efficiency by using interfacial exciton blocking layer in blue emitting electrophosphorescent organic light emitting diodes

  • Kim, Ji-Whan;Kim, Joo-Hyun;Yoon, Do-Yeung;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1381-1382
    • /
    • 2005
  • We report improved efficiency in blue electrophosphorescent organic light emitting diodes by introducing an interfacial exciton blocking layer between light emitting layer (EML) and hole transport layer (HTL). Iridium(III) bis [(4,6-di-fluorophenyl)- pyridinato -N,C2']picolinate (FIrpic) was used as blue phosphorescent dopant and JHK6-3 with carbazole and electron transporting group as host and also as the interfacial layer, resulting in drastic increase in quantum efficiency.

  • PDF