• Title/Summary/Keyword: electronic prediction

Search Result 759, Processing Time 0.023 seconds

A Study on Image Processing of Tree Discharges for Insulation Destructive Prediction (절연파괴 예측을 위한 트리방전의 영상처리에 관한 연구)

  • 오무송;김태성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • The proposed system was composed of pre-processor which was executing binary/high-pass filtering and post-processor which ranged from statistic data to prediction. In post-processor work, step one was filter process of image, step two was image recognition, and step three was destruction degree/time prediction. After these processing, we could predict image of the last destruction timestamp. This research was produced variation value according to growth of tree pattern. This result showed improved correction, when this research was applied image Processing. Pre-processing step of original image had good result binary work after high pas- filter execution. In the case of using partial discharge of the image, our research could predict the last destruction timestamp. By means of experimental data, this prediction system was acquired $\pm$3.2% error range.

  • PDF

Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling

  • Jung, Hyungjoo;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1659-1668
    • /
    • 2016
  • Understanding 3D structure of scenes is of a great interest in various vision-related tasks. In this paper, we present a unified approach for estimating depth from a single monocular image. The key idea of our approach is to take advantages both of parametric learning and non-parametric sampling method. Using a parametric convolutional network, our approach learns the relation of various monocular cues, which make a coarse global prediction. We also leverage the local prediction to refine the global prediction. It is practically estimated in a non-parametric framework. The integration of local and global predictions is accomplished by concatenating the feature maps of the global prediction with those from local ones. Experimental results demonstrate that the proposed method outperforms state-of-the-art methods both qualitatively and quantitatively.

IoT Connectivity Application for Smart Building based on Analysis and Prediction System

  • COROTINSCHI, Ghenadie;FRANCU, Catalin;ZAGAN, Ionel;GAITAN, Vasile Gheorghita
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.103-108
    • /
    • 2021
  • The emergence of new technologies and their implementation by different manufacturers of electronic devices are experiencing an ascending trend. Most of the time, these protocols are expected to reach a certain degree of maturity, and electronic equipment manufacturers use simplified communication standards and interfaces that have already reached maturity in terms of their development such as ModBUS, KNX or CAN. This paper proposes an IoT solution of the Smart Home type based on an Analysis and Prediction System. A data acquisition component was implemented and there was defined an algorithm for the analysis and prediction of actions based on the values collected from the data update component and the data logger records.

Development of a Weather Prediction Device Using Transformer Models and IoT Techniques

  • Iyapo Kamoru Olarewaju;Kyung Ki Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.164-168
    • /
    • 2023
  • Accurate and reliable weather forecasts for temperature, relative humidity, and precipitation using advanced transformer models and IoT are essential in various fields related to global climate change. We propose a novel weather prediction device that integrates state-of-the-art transformer models and IoT techniques to improve prediction accuracy and real-time processing. The proposed system demonstrated high reliability and performance, offering valuable insights for industries and sectors that rely on accurate weather information, including agriculture, transportation, and emergency response planning. The integration of transformer models with the IoT signifies a substantial advancement in weather and climate modeling.

A methodology for creating a function-centered reliability prediction model (기능 중심의 신뢰성 예측 모델링 방법론)

  • Chung, Yong-ho;Park, Ji-Myoung;Jang, Joong-Soon;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.4
    • /
    • pp.77-84
    • /
    • 2016
  • This paper proposes a methodology for creating a function based reliability prediction model. Although, there are various works for reliability prediction, one of the features of their research is that the research is based on hardware-centered reliability prediction. Reliability is often defined as the probability that a device will perform its intended function, under operating condition, for a specified period of time, there is a profound irony about reliability prediction problem. In this paper, we proposed four-phase modeling procedure for function-centered reliability prediction. The proposed modeling procedure consists of four models; 1) structure block model, 2) function block model, 3) device model, and 4) reliability prediction model. We performed function-centered reliability prediction for electronic ballast using the proposed modeling procedure and MIL-HDBK-217F which is the military handbook for reliability prediction of electronic equipment.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Prediction of Power Consumptions Based on Gated Recurrent Unit for Internet of Energy (에너지 인터넷을 위한 GRU기반 전력사용량 예측)

  • Lee, Dong-gu;Sun, Young-Ghyu;Sim, Is-sac;Hwang, Yu-Min;Kim, Sooh-wan;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.120-126
    • /
    • 2019
  • Recently, accurate prediction of power consumption based on machine learning techniques in Internet of Energy (IoE) has been actively studied using the large amount of electricity data acquired from advanced metering infrastructure (AMI). In this paper, we propose a deep learning model based on Gated Recurrent Unit (GRU) as an artificial intelligence (AI) network that can effectively perform pattern recognition of time series data such as the power consumption, and analyze performance of the prediction based on real household power usage data. In the performance analysis, performance comparison between the proposed GRU-based learning model and the conventional learning model of Long Short Term Memory (LSTM) is described. In the simulation results, mean squared error (MSE), mean absolute error (MAE), forecast skill score, normalized root mean square error (RMSE), and normalized mean bias error (NMBE) are used as performance evaluation indexes, and we confirm that the performance of the prediction of the proposed GRU-based learning model is greatly improved.

Enhanced Prediction for Low Complexity Near-lossless Compression (낮은 복잡도의 준무손실 압축을 위한 향상된 예측 기법)

  • Son, Ji Deok;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.2
    • /
    • pp.227-239
    • /
    • 2014
  • This paper proposes an enhance prediction for conventional near-lossless coder to effectively lower external memory bandwidth in image processing SoC. First, we utilize an already reconstructed green component as a base of predictor of the other color component because high correlation between RGB color components usually exists. Next, we can improve prediction performance by applying variable block size prediction. Lastly, we use minimum internal memory and improve a temporal prediction performance by using a template dictionary that is sampled in previous frame. Experimental results show that the proposed algorithm shows better performance than the previous works. Natural images have approximately 30% improvement in coding efficiency and CG images have 60% improvement on average.

ITU-R Rec. P.1546-3 Propagation Prediction model Simulator using additional transmitting parameter (송신국 파라미터를 이용한 ITU-R Rec. P.1546-3 전파예측 모델 시뮬레이터 설계)

  • Lee, Kyung-Ryang;Choi, Sung-Woong;Cha, Jae-Sang;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • International Telecommunication Union(ITU), recommended a propagation prediction models that can be applied to a various propagation environments that many services have been established in the field of broadcasting and telecommunications using ITU-R. Each propagation prediction models are revised with the complement procedures of an expected difference of channel environment and prepared for a standard of a propagation prediction. In this research, it is possible to realized a practical propagation prediction in each transmitting station for a broadcasting environments of ITU-R Rec. P.1546-3 model, so called the point-to-area, using supplementary parameters of the transmitting station specification.

AllEC: An Implementation of Application for EC Numbers Prediction based on AEC Algorithm

  • Park, Juyeon;Park, Mingyu;Han, Sora;Kim, Jeongdong;Oh, Taejin;Lee, Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.201-212
    • /
    • 2022
  • With the development of sequencing technology, there is a need for technology to predict the function of the protein sequence. Enzyme Commission (EC) numbers are becoming markers that distinguish the function of the sequence. In particular, many researchers are researching various methods of predicting the EC numbers of protein sequences based on deep learning. However, as studies using various methods exist, a problem arises, in which the exact prediction result of the sequence is unknown. To solve this problem, this paper proposes an All Enzyme Commission (AEC) algorithm. The proposed AEC is an algorithm that executes various prediction methods and integrates the results when predicting sequences. This algorithm uses duplicates to give more weights when duplicate values are obtained from multiple methods. The largest value, among the final prediction result values for each method to which the weight is applied, is the final prediction result. Moreover, for the convenience of researchers, the proposed algorithm is provided through the AllEC web services. They can use the algorithms regardless of the operating systems, installation, or operating environment.