• Title/Summary/Keyword: electronic communication networks

Search Result 672, Processing Time 0.026 seconds

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

Terrestrial Digital TV Relay Transmission Construction by Using Optoelectronic Techniques (광전변환기술을 이용한 Digital TV 중계전송 구성방안)

  • 김준원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.568-573
    • /
    • 2003
  • This paper describes a study of terrestrial digital TV transmission systems using wideband opto-electronic techniques such as electro-absorption modulators, wavelength division multiplex to support cost effective, high speed, flexible and interactive digital TV networks including ultra-high speed subscriber networks. In particular, the national DTV networks to be installed is required huge amount of cost. Therefore, the network should be carefully designed for DTV, communication and multimedia services in the future. In this paper, wideband optoelectronic DTV systems are suggested.

  • PDF

Mobility Influences on the Capacity of Wireless Cellular Networks

  • Zhang, Yide;Li, Lemin;Li, Bo
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.799-802
    • /
    • 2006
  • Capacity has always been a major concern in wireless networks. This letter studies the impact of mobility on the overall system capacity in wireless cellular networks. In this letter, we present a simple system model which we developed to capture the inherent relationships among system capacity, new call blocking probability, handoff dropping probability, call terminating probability, and bandwidth utilization rate. We investigate the complex relationship between mobility and capacity-related parameters. Through simulation, we demonstrate that mobility has a significant impact on capacity and is reversely proportional to the bandwidth reserved for handoff traffic.

  • PDF

Analysis of Wireless Network Technology for High Reliability Aircraft Networks (고 신뢰성 항공기 무선 네트워크 동향 및 기술 분석)

  • Ahn, Seung-Pyo;Kim, Da-Hye;Lee, Jae-Min;Kim, Dong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1933-1941
    • /
    • 2016
  • This paper compares the performance of wireless communication technologies to replace the wired networks by wireless networks on avionics intra-communication. Due to the drawbacks of wired network, such as complexity, weight, maintenance cost and scalability, it leads to the high data rate and network traffic demands of avionics systems. Therefore, in WAIC(Wireless Avionics Intra-Communications) system suggested by ITU(International Telecommunication Union), based on environment of avionics system and requirements of a wired network, wireless network structures are defined to solve the problems of wired networks. In this paper, we consider features, advantages and disadvantages of wireless communication technologies which can be used for wireless avionics network, and we propose suitable wireless communication technology candidates for wireless avionics networks in WAIC environments.

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

Performance of Cooperative Networks with Mixed Relaying Protocols in Railway Environments (철도환경에서 혼합 중계 프로토콜을 이용한 협력 네트워크의 성능)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.3
    • /
    • pp.271-276
    • /
    • 2016
  • Cooperative networks enhance the overall communication performance by combining signals from relay nodes and direct signal. In this paper, we analyze the performance of cooperative communication systems which use mixed relaying protocols. By assuming several relay nodes exist between the source node and destination node, we consider the systems use not a single relaying protocol but both decode-and-forward and amplify-and-forward protocols randomly. We analyze the effect of each relying protocol for the overall system performance, and also consider the performance depending on the relay location. Differential modulation scheme which demodulates signal without channel state information is adopted where it can be applicable fast varying channel such as railway environments.

Downlink System Level Simulator for Enhanced Inter-Cell Interference Coordination in Maritime Heterogeneous Networks (해양 이종 네트워크 환경에서 인접 셀 간섭 제어를 고려한 하향링크 시스템 레벨 시뮬레이터 개발)

  • Hwang, Taemin;Nam, Yujin;Jeong, Min-A;So, Jaewoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1424-1432
    • /
    • 2015
  • As the wireless communication technologies are being studied for application to maritime communication networks in a fusion of marine industries and IT technology, interference coordination techniques have been studied in the maritime heterogeneous networks. In this paper, we develop a simulator for measuring, verifying and evaluating performance of a maritime heterogeneous network. Unlike other previous simulators, the developed simulator applies enhanced inter-cell interference coordination (eICIC) that are being introduced in the 3GPP Release 10 for mitigating the cross-tier interference between ships. Furthermore, we investigate the effects of almost blank subframes (ABS) and cell range expansion (CRE) on the throughput of small cells in maritime heterogeneous networks by using the developed simulator.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF

Hybrid Full Frequency Precoding for Integrated Remote Wireless Sensor and Multibeam Satellite Networks

  • Li, Hongjun;Dong, Feihong;Gong, Xiangwu;Deng, Changliang;Jia, Luliang;Wang, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2546-2566
    • /
    • 2016
  • This paper investigates an efficient transmission scheme for the remote wireless sensors to receive information which is rarely discussed in the integrated remote wireless sensor and multibeam satellite networks (IWSMSNs). The networks can be employed to exchange sensing information for emergency scenario, ocean scenario, and so on, which are isolated from available terrestrial networks. As the efficient transmission link is important to the IWSMSNs, we propose a hybrid full frequency (HFF) precoding by taking advantage of frequency reuse and multiple-input multiple-output (MIMO) precoding. Considering energy efficiency and sinks fairness are crucial to transmission link, thus the HFF precoding problems are formulated as transmit power minimization (TPM) and max-min fair (MMF) received signal to interference plus noise ratio (SINR) problems, which can be transformed to indefinite quadratic optimization programs. Then this paper presents a semi-definite programming (SDP) algorithm to solve the problems for the IWSMSNs. The promising potential of HFF for the real IWSMSNs is demonstrated through simulations.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.